
Steven Blake

Steven Blake

LEARNING TO USE
THE ORICl COMPUTER

This beginners' guide really does begin at the beginning. It assumes that you
want to learn to use the Orie 1 computer in your work or leisure, not become a
theorist in computing. Learning to Use the Orie 1 Computer provides a simple,
down to earth, jargon-free introduction to the machine and its software. Follow the
text and illustrations and you will end up operating the Orie 1 and understanding its
many capabilities.

Many applications of the Orie 1 are described, including business, educational
and hobby uses. Additionally, a simple and direct introduction to programming
the Orie 1 is given in a way which will help motivate the user to further investigation
of the Orie 1 's capabilities. The Orie 1 's ability to produce and draw pictures and
diagrams is explored and explained, and programs for a large number of graphics
applications are presented.

This book will appeal to new Orie 1 owners, students in schools and colleges
where Orie 1 s are used, businessmen who wish to learn about how to use the Orie 1
and program it. It will help those who are already learning to use the Orie 1 , but
find their current manuals difficult to follow. It also provides the would-be purchaser
of microcomputers with information on how the Orie 1 operates and performs,
which will help him to assess whether the machine will suit his need.

About the series

This series of books has been designed to provide potential users, established
users, teachers, students and businessmen with standardised introductions to
the use of popular microcomputers. Extensive use has been made of photographs,
diagrams and drawings to illustrate the text and make it easy to read and
understand.

As the layout and content of the books in the series are similar, each book may
be used in conjunction with others for purposes of comparison of performance
and capabilities. The Learning to Use series is an inexpensive way of checking
that the would-be purchasers' provisional choice of machine is the correct one.

The series is open-ended and will cover new models of microcomputers as
they appear on the market.

Titles in the series

Learning to Use the PET Computer Learning to Use the Dragon 32 Computer
Learning to Use the ZX81 Computer Learning to Use the Commodore 64 Computer
Learning to Use the BBC Microcomputer Learning to Use the Tl99/4A Computer
Learning to Use the VIC-20 Computer Learning to Use the Orie 1 Computer
Learning to Use the ZX Spectrum Computer Learning to Use the Apple 11/lle Computer

£4.95

Learning to Use the Lynx Computer

. ISBN O 566 03495 6
Gower Publishing Company Limited, Gower House, Croft Road,

Ak:lershot, Hampshire GU11 3HR, England

f
Learning to Use the Orie 1 Computer

Learning to Use the
Orie 1 Computer
by Steven Blake

Gower

© Gower Publishing Company 1983

All rights reserved. No part ofthis publication may be
reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical,
photocopying, recording or otherwise without the prior
permission of Gower Publishing Co. Ltd.

Published by
Gower Publishing Company Limited,
Gower House, Croft Road, Aldershot,
Hampshire GUI 1 3HR, England

British Library Cataloguing in Publication Data

Blake, Steven,
Learning to Use the Orie l Computer.-(Learning to use)
l. Oriel (Computer)
I. Title
001.64'04 QA76.8.0/

ISBN O 566 03495 6

Typeset and printed in Great Britain
at FD Graphics, Fleet, Rants.

Contents

List of Figures __________________ _
Foreword ______________________ _

Chapter 1. Introduction to the Orie ___________ _
What is the Orie? __________________ _
How was the Orie developed? ______________ _
What can the Orie do? ________________ _
How can the Orie be extended? _____________ _
What are some typical applications for the Orie microcomputer?_
SummarY-------------------�---

Chapter 2. Using the Orie ______________ _
Switching on _____________________ _
The screen ______________________ _
The keyboard __________________ _
Loading a program __________________ _
Editing _____________________ _
Giving simple instructions to the Orie ___________ _
The Orie as a calculator ________________ _
Summary ______________________ _
Self-test questions __________________ _

Chapter 3. Introduction to programming ________ _
Writing and running a simple program ___________ _
Some more BASIC instructions _____________ _

Input _____________________ _
Decisions _____________________ _
Repetition ____________________ _

More programs ____________________ _
Saving programs ___________________ _
Using the printer----------'-------------
Summary ____________________ _
Self-test questions __________________ _

Chapter 4. Graphics ________________ _
Introduction _____________________ _
The screen and memory ________________ _
Low resolution ____________________ _

vii
Xl

1
1
3
6
9

10
12

13
13
14
15
18
22
28

33
35

35

37
37
40
40
41
45
47
52
53

54
54

57
57
59
60

V

Screen patterns _____________________ _
High resolution ___________________ _
Producing a drawing, __________________ _
Movement ______________________ _
Animation ______________________ _
Dynamic simulation ___________________ _
Special commands ___________________ _

Chapter 5. Special features of the Orie _________ _
Specification of the Orie _______________ _
Inside the Orie microcomputer ______________ _
Sound on the Orie computer _______________ _
Using the Orie as a timer ________________ _
Conclusions _____________________ _

Appendix 1 Further reading _____________ _
Books on the Orie _________________ _
General Books __________________ _
Books about programming ______________ _
Magazines ____________________ _

Appendix 2 Glossary ________________ _
Appendix 3 The Tower of Hanoi- a game ________ _

VI

64
69

70
73
75
78
79

83
83
84
85
86
88

91
91
91
92

92
95

105

List of Figures

1.1 The Orie ________________________ _
1.2 Integrated circuits: chips __________________ _
1.3 A cassette tape ______________________ _
1.4 A cassette recorder attached to the Orie _____________ _
1.5 A rear view of the Orie ___________________ _
1.6 A printer that can be attached to the Orie ____________ _

2.1 Screen display when the Orie is switched on ___________ _
2.2 Table of Orie control characters _______________ _
2. 3 Screen messages while loading from tape ____________ _
2.4 Dialogue from the Tower of Hanoi program ___________ _
2.5 Dialogue from the Tower of Hanoi program ___________ _
2.6 The Counting program-.without 'trace on' (TRON) ________ _
2. 7 The Counting program - with 'trace on' (TRON) _________ _
2.8 A string stored in memory __________________ _
2. 9 Numbers stored in memory after A = 3: B = 4 __________ _

3.1 The result of running a program _______________ _
3.2 Flow chart for simple maths drill program ____________ _
3.3 Flow chart for improved maths drill program ___________ _
3.4 Display produced by Repetition program ____________ _
3.5 Two parallel arrays for translation program ___________ _

4.1 The low resolution screen grid ________________ _
4.2 The high resolution screen grid ________________ _
4.3 The alternate (graphics) character set ______________ _
4.4 A montage of some of graphics 'squares' _____________ _
4.5 Program scheme for screen patterns ______________ _
4.6 Screen pattern 1 (CLS) ___________________ _
4.7 Screen pattern 1 (LORESl) ________________ _
4.8 Screen pattern 2 (CLS) __________________ _
4.9 Screen pattern 2 (LORES!) ________________ _
4.10 Display produced by Lines program ______________ _
4.11 (a) Butterfly. (b) Butterfly with grid. (c) Butterfly composed of graphics

characters. (d) Outline of image plotted on screen _________ _
4.12 Butterfly as displayed on the screen ______________ _
4.13 Frames 1, 2 and 3 for flying butterfly ______________ _
4.14 Flow chart for flying butterfly program _____________ _
4.15 Display produced with the FILL command ___________ _
4.16 Display produced with the CIRCLE command __________ _
4.17 Fungus display produced with the PATTERN command ______ _

1
2
7
7
8
8

14
15
20
23
23
29
29
30
34

39
43
44
46
so

58
59
61
63
65
67
67
68
68
71

72
74
75
76
80
81
81

Vil

Foreword

This series of books is designed to fill the gap left by nearly every other
book ever published on microcomputing. For some reason there has
always been a surfeit of books which assume a thorough basic
knowledge; but few books to help you find that knowledge in the first
place. Even the manuals supplied with most systems seem to assume you
understand the main principles from the beginning: in fact, most are
only useful if you don't need them! This open-ended series of books
from the Gower Publishing Company provides the new computer user
with a jargon-free introduction to his machine. He doesn't need to have
any previous computing experience, for the book itself provides all the
relevant information necessary to get started: and if he does come across
any strange new jargon, there is a useful glossary at the back. It is not,
and is not intended to be, a text book on BASIC programming; but after
reading this book even the complete beginner will be able to ref er to a
text book with complete confidence.

Most young readers, and the books are primarily (but not solely!)
designed for young readers, will be using their machines at school or at
home. It was probably bought by parents to help the family get used to
the new technology; or perhaps it is the school's new system to help in
teaching computer science. If it is used at home, it is almost certain that
parents will join in the learning process - and in many cases, they may
well start to monopolise it! Fifty years ago, these same parents would
have bought their children a train set, and would then play with it for
hours on end themselves. We can expect the same to happen with the
new micros, for programming can become a very addictive pastime! This
series could be as useful for the adult novice as it is for the younger
reader.

Computing and computer skills are a modern concept, and we will all
need to understand at least the basic principles in a world that is
becoming increasingly computer orientated. Since our future is to be
based on the computer as a useful tool to help run our factories, offices,
schools and homes, we need to know how to get the most out of them. At
best, the computer can be a useful, profitable, enjoyable, and beneficial
aid; and at worst it can be an expensive, useless conglomeration of
electronic junk. The Learning to Use series of books is designed to help
new users get the best from their computers as quickly and as easily as
possible.

lX

X

. Th.e book� describe a number of applications for each computer,1�clud�g busmess, education and hobbyist. Furthermore, a simple and direct mtroduction to programming is included in such a way as tomotivate further investigation of the computer and its capabilities. Eachcomputer's ability to draw pictures and diagrams in black and white orcolour, is explored and explained, and programs' for a large number ofgraphics applications are presented . Wherever available, details of eachsystem's so�nd reproducin� capabilities, including example programsand a version of the national anthem, are also included . For theprograms, the series is indebted to William Turner a lecturer in. .

' statistics at the Oxford Polytechnic - and no mean programmer! - whohas had the unenviable task of converting somebody else's programs foreach new book. The Tower of Hanoi game at the end of each book isentirely his _own program and illustrates the teaching philosophy heemploys at his college: elegant simplicity. Two furth�r �ommendations are necessary: to Michael Fluskey ofNewtech Publishmg Ltd who first conceived the idea for this series and has throughout been the driving force behind it; and to Garry Marshall who wrote.�e first book in the series: Learning to Use the PET Computer.!t was the JOmt work of these two that developed the basic structure that1s now used throughout the series. This said, I can only wish the reader as much enjoyment from thebook and his computer, as I have from mine.
Kevin Townsend Editor, Micro Software and Systems Magazine

Chapter 1

Introduction to the Orie

What is the Orie?

The Orie 1 (which, for the rest of this book, we shall abbreviate to. 'the
Orie') is a computer. It is usually called a microcomputer (and sometimes
a personal computer or home computer) because it is extremely small

compared to early computers - and also because its elect�onic 'heart: is a
microprocessor. As you can see from Figure .1.1, the One. appears hke .acase with a keyboard, rather like a conventional typewnter. In use, 1t
requires a screen of some sort for its display. In order_ to keep �o:wn
costs, it has been designed to work primarily with an ordmary telev1s1on
set (either black and white, or colour). . . . Inside the Orie there is a number of integrated crrcmts, or chips,. as
shown in Figure 1.2. One contains the microprocessor. Others provide
the computer's memory, and can store information. Initially, .the�e is. no
need to worry about the inside of the computer. The electromc crrcmtry

Figure 1.1 The Orie.

and the devices that make the Orie work are fascinating, but a detailed
understanding of them is certainly not necessary in order to use the
computer - and this introductory book is about learning to use the Orie
computer. Indeed, since early versions of the Orie are supplied with the
dire warning 'WARRANTY INVALID if this case is opened' it is
advisable that you learn not to worry too much about what the inside
looks like.

The main feature, the keyboard, is for communicating to the
computer. Commands that are to be obeyed, and information that is to
be stored, can simply be typed in. Because the keyboard is set out in the
same way as a typewriter, a good typist can type almost as quickly as on
an ordinary typewriter. (We shall look at some of the 'new' keys shortly.)
Notice, however, that if you try to type too fast, and do not perhaps
press the keys firmly enough, it is quite possible for the Orie to miss
some of the keys you think you have pressed. Nevertheless, it is a good
idea from the start to try to use the professional 'five-finger' typing
techniques rather than one-finger tapping: in the long run, this will save
a considerable amount of time. Once the correct connections are made to
the television set, anything you type on the keyboard will automatically
appear on the television screen.

The Orie computer possesses a number of what are called 'screen
editing facilities'. These make it fairly simple and easy for you to 'edit'
your typing; that is, to correct errors, to make changes, and to arrange
for the revised typing to appear on the screen. The Oric's screen editing
facilities have been very carefully thought out. With a little practice, you
will find them easy to use.

Besides letters and numbers, the Orie also lets you produce simple
pictures on the screen. This facility is known as 'graphics', and is an
impressive bonus to the use of any computer. The imaginative use of
pictures, diagrams and graphs enlivens the presentation of information,

Figure 1.2 Integrated circuits: chips.

2

and can be used in computer games, in business applications, and in
educational programs.

The Orie is light and compact, weighing less than 2lbs and measuring
only 11-inches by 7-inches, and is small enough to be carried from room
to room or from house to house, or even from schoolroom to
schoolro�m. It can be set up and used in its new location quickly and
easily, for it needs only to be connected via its own po�er tran�f�rmer to
the mains and connected to an ordinary domestic television set.
Furthermore as soon as it is switched on it is ready to accept commands
typed in at the keyboard, provided only that they are typed in a language
that the computer understands. The language is BASIC, and it enables
you to issue commands that are promptly and automatically obeyed by
the Orie computer.

There are many different versions of BASIC, produced by dif�ere�t
software companies. The Orie has its own extended BASIC, which is
held inside the computer. Throughout this book we shall concentrate on
the inbuilt Orie BASIC that is supplied with the computer. Unless we
specifically state otherwise, whenever we refer to 'BASIC', we are
referring to this Orie BASIC.
How was the Orie developed?

The two main events that have hastened the advance of microelectronics,
and microprocessors in particular, are the space race of the 1960s �nd. the
general requirements of the world's various defence org�n�sations
(particularly the US Department of Defense, and the UK Mimstry of
Defence) ever since the end of the Second World War. In the space race,
because the US rockets were less powerful than those of the Russians,
the Americans needed to reduce the size and weight of everything that
had to be carried by their rockets - including the electronics. At the same
time defence leaders began to demand computers that were small
enou'gh, light enough, and tough enough to be carried arou�d in, and
survive battle conditions (for example, to provide computerised range
finding' within tanks). In particular, this stimulated the_ �me�i�an
electronics industry to investigate and develop means of mmiaturismg
electronic circuitry - and the result is the microprocessor, often referred
to as the chip.

Not only is the microprocessor extremely small (smaller than the size
of the average finger-nail) and at the same time relatively_ powerful (�s
powerful as the early computers that would fill an average .sized ro�m), it
is a multi-purpose device that can perform any electromc function for
which it can be programmed. This ver�atility has led t� th: use of
microprocessors in a wide and ever-growmg range of apphcat10ns (the

3

most com�on, and best �nown, is,_ of course, as the 'heart' of a general

purp_ose microcomputer hke the One). The consequent mass production
of microp!ocessors has caused the cost per unit (of the microprocessor -
not the microcomputer!) to drop to just a few pence .

The parti�ular history of the Orie microcomputer can be traced to the
g�eat

_
b?o1? m small, inexpensive home computers caused by Clive

Si_ncla1r s mn�vative ZX80 microcomputer. Other manufacturers had
tned to break mto the potentially massive home/hobby computer market

(n?ta?ly the Personal Electronic Transactor- PET), but had, at least on
this side of the Atlantic, conspicuously failed .

Sinclair succeeded where his predecessors failed because he under­
stood _the price_limitations for the UK and European markets. Where the

Amencan fam_Ily might spend up to $1,000 for a home computer, the

E�ropean family would not spend more than £100 . Sinclair introduced a

rmcrocomp�ter for less than £100 . Since that time, the success of the

ZX80 and his subsequent machines has educated and opened the market
to a new range . of slightly more expensive and considerably more

powerful home microcomputers. The Orie is one of these .
The Ori� was design�d by �angerine Computer Systems, a UK

c011�pany with an . es�abhshe� history in the manufacture of hobby
eqmpment: The prmcipal designer, Dr Paul Johnson, together with the

current One P�o?ucts International managing director, Barry Muncas­
te�, had been Jomtly responsible for the development of Tangerine's
Microtan self assembly c?mputer and, perhaps more relevantly, the
Ta�tel Prestel adaptor. It is consequently not surprising to note that the

One has several Prestel compatible features, including a similar graphics
c�aracter set and the seven standard Viewdata colours among its total of
sixteen . colours. The same two gentlemen were, incidentally, also
resronsible for the development of the electronic meter used in today's
taxi cabs.

Orie Pro�ucts International was subsequently established to market
the _ new One computer. The name chosen for the new machine is
vanously �upposed to b� a 'be�ea?ed anag!am of micro'; or, perhaps
more credibly, by phonetic association, a variant and therefore relative of
Avon's (fro� t�e tel��ision series 'Blake's Seven') ORAC. ORAC's great
strength lay m Its ability to tap the communications channels of all other
computers un�il it bec�me, in a_ sense? the sum total of all existing
co�puters . With the history of its designers' association with Prestel
eq�ipment, we may well expect communications to figure strongly in the
One s future development.

The Orie is based o_n . the MCS 6502 microprocessor, a processor
manufactured by a subsidiary of Commodore, and identical to the one

4

used in many of the amusement arcade games �nd a number of other
successful microcomputers - notably, the PET

_
itself, t�e VIC-20, �nd

the Apple II. Ironically, given the military origms �f m1croelectromcs,
this microprocessor is a more advanced examl?le of its t_echnology t_ha_n
those used in the guidance systems of the mter-contmental balhst1c
missiles and even the ultra-modern Exocet-type missiles! This processor
is the h�art (and brain!) of the Orie. Although it_ does all �he hard wor�,
all the computing and calculations, you can tap its potential �nd ma�e 1t

work for you without having any detailed knowledge o� how 1t functions.
While many manufacturers release several ver�1ons of any new

computer (usually based on the size of its RA�, or mte�nal memo�y)'.
Orie Products International has so far released JUSt the smgle mac�m�.
the Orie 48K system. The '48' refers to the size of its memory, which �s

48K RAM, or 48 x 1024 bytes of rand?m access me_mory. One �yte 1s
actually made up of 8 bits of infor!°ation, but the important thn�g to
remember is that it takes approximately one byte to store a smg�e

character. Thus, the Orie can store up to a little over 48,000 characters m

its internal memory. . . .
(However, it is worth noting that the company ongmally mte�ded to

release a cheaper 16K version as well as the _larger system_, and, i_ndeed,
got as far as sending out pre-release copies to magazme reviewers.
Continuing problems with the chips bought by the c?mpany eventually
delayed the launch beyond the publication date for this book, but we can

nevertheless expect to see a 16K version shortly after you are able to read

this passage. In the meantime, it has been reported that the company �as
ordered $4m worth of 64K chips from Texas Instrumen

_
ts, so speculat10n

is growing over the possibility of a powerful 64K ma':hme th�t would be

technically as powerful as many of the current busmess microcompu-
ters.) · · b hWhen using the computer, the internal memory (compnsmg ot
RAM (random access memory that can be used to store programs, data ,
computations, etcetera) and ROM (read only memory �hat cannot be

utilised by the user, and usually contains the language mt�rpreter �nd

other systems software) has to store both the program �hat 1s operat�ng,
the language interpreter that �onverts . the program mstruct_ions mto
machine instructions, and any mformation you have to type m . Thus,
smaller computers like the old 8K PETs, and the lK ZX80s, are all
capable of operating simple games programs, but are prob_ably not large

enough to operate the more sophisticated fantasy gam�s l�ke Dung_eons
and Dragons; and certainly not large enough for _the maionty _of busmess
uses. But since the first Orie produced has a fairly substantia� memory
size, certainly in terms of home computers, it is more than likely that

5

Orie Products International has further plans for the machines, even into
basic business applications.

What can the Orie do?

Fundamentally, the Orie microcomputer can do anything that you can
tell it to do. That is, it will obey any instruction or set of instructions that
is correctly given. A set of instructions to a computer is usually called a
computer program, and is written in a special language called a
programming language. Like any other computer, the Orie executes
programs and does what you tell it to do. Thus, one way to make use of
the computer is to learn to program it in its own language, which is
BASIC. Now although BASIC is the natural language of the Orie
computer, it is not the natural language of the 6502 microprocessor. The
BASIC program must therefore be translated into the language, or code
(known as 'machine code'), that is understood by the microprocessor.
This second level of translation happens automatically when you RUN a
program, and you will be unaware of it when you are using the
computer. Although it is possible to write programs directly in the Oric's
machine code, this book will not go into the methods. Machine code
programs are considerably more difficult to write than BASIC programs,
even though they operate at a much faster speed. One reason for this
faster operation is that there is no time lost in the translation between
BASIC and machine code. Another reason is that no translation is ever as
good as the original. Just as a word for word translation of Shakespeare
into French can never be as good as either Shakespeare's English, or
Moliere's French, so a translation from BASIC to machine code can
never be as efficient as a program written directly in machine code.

However, it is not essential to be an expert programmer to use the
Orie computer since a growing number of ready-made programs can
already be purchased. These programs either come on a cassette tape,
from which they are transferred into the memory via an ordinary cassette
recorder/player unit; or, at some time in the future, on small floppy disks
that can be used with the forthcoming microdrives. Since many
programs are already available, you may like to have a look at the hobby
computer magazines for their advertisements. A much wider range will
soon be available. Many commercial firms will be supplying programs
specifically for the Orie, and some are already advertised in the press.
Incidentally, since the Orie uses the same microprocessor as several
other microcomputers, it is quite possible that some programs already
written for these other systems may be easily rewritten for the Orie.

Programs that are purchased from a separate source usually arrive on
an ordinary cassette. Figure 1.3, shows just such a cassette. To transfer a

6

Figure 1.3 A cassette tape.

Figure 1.4 A cassette recorder attached to the Orie.

7

program from this to the Orie requires a cassette tape system
(player/recorder). Almost any cassette recorder :will do, but surprisingly,
t�e cheap portable systems are better than the more expensive units.
Figure 1.4 shows a cassette tape recorder attached to the Orie. The
programs themselves are often ref erred to as 'software' in contrast to the
computer itself, which is known as the 'hardware'.

'

The Orie computer ea� do many things. As with most microcompu­
ters, you can often mak� lt do these things without having any personal
knowledge_ of programmmg. Nevertheless, it is often useful to be able to
program, �f o�ly to ame�d or modify an existing program. Besides,
progra�mmg is fun! It is easy to do, and it provides a means of
expressmg and communicating your own ideas to the computer so that it
ea� test_them for you. You will learn how to write simple programs later
on m this book.

l•

Figure 1.5 A rear view of the Orie.

Figure 1.6 A printer that can be attached to the Orie.

8

How can the Orie be extended?

Besides performing computations and storing information the Orie can,
again like most other computers, be used in conjunction with other
devices. Units that can be connected to it, and controlled by it, are
called 'peripherals'. You met one of them in the previous section: the
cassette recorder. This is a peripheral device used for the permanent
storage of information or programs by means of a magnetic pattern on
the tape. Although the early Orics were not supplied with a cable to
connect it and the recorder, we understand that in future Orie Products
International will be supplying the cable. Figure 1.5 shows a rear view of
the computer with the various peripheral connection sockets. One end of
the cable connects to the right-hand (viewed from the rear) of the two
DIN plug sockets, while the other end connects to the 'earphone' and
'microphone' sockets of the recorder.

For many computer applications it is useful to have the results of the
computer's work in written form to provide a permanent record of the
results of computations. It is also a useful aid for when you start to write
your own programs, and particularly when you start to amend programs,
to have a written copy. This printed output is called either a 'printout',
or a 'listing'. A printout usually refers to the results of computations,
while a listing refers specifically to a printed copy of a program.
Obviously, a computer printer is an essential peripheral for obtaining
printouts and listings. A printer such as that shown in Figure 1.6 can be
attached to the Orie. If you wish to buy a printer, ask your supplier, or
Orie Products International, for advice. The important technical details
to remember are that the printer should be 'Centronics compatible', and
that the connection is made via a parallel interface. Consult the manual
supplied with the particular printer that you buy for details on its
operation.

All peripherals are attached to the Orie using the connections on the
rear of the computer. A 'port' is another name for this connection point
between a computer and the outside world because it is similar to the
way in which an airport or shipping port connects a country or region to
its own outside world. From left to right (Figure 1.5), these ports are for
connection to: a television set; an industry standard monitor (which is a
form of visual display unit - VDU - designed specifically for use with
computers, and therefore usually providing a better picture); a tape·
cassette player/recorder; the printer; and finally the bus expansion port
(a bus is simply an interconnection channel via which any one of many
devices may be connected to any one of many devices). This last port
provides the means to connect, among others, extra memory, joysticks,

9

program cartridges, and a modem. A modem is a device that enables the
c?�put�r to attach to the public telephone network. It converts the
d1g1tal signals _of _the computer into analogue signals for the telephone
net�ork; that_1s, 1t MOdulates and DEModulates the signals. With this
device you will be able to access the Prestel information service and
more particularly the new Micronet 800 service in order to r:ceive
programs automatically. You could also use it to send and receive
electronic mail via the Prestel Mailbox system.

Next to the bus expansion port is a further socket which is not,
perhaps, a port in the true sense; that is, the power input socket.

What are some typical applications of the Orie microcomputer?

T�e Orie computer was designed with many serious applications in
mmd. The areas in which it can be used can be broadly classified as: in
the home for personal and recreational use; in educational institutions·
and, to a certain extent, in business.

'

_For personal use, there are games programs of many kinds already
available, and more becoming available all the time. There is even one,
called the Tower of Hanoi (a classic logic problem) at the end of this
boo½, that you_ can type into the Orie and play. Using a computer for
playmg games 1s sometimes criticised as a frivolous use of an advanced
�lectronic device, and there is no doubt that many games are
hghthearted: Nevertheless, they do serve a useful purpose for relaxation
a�d ent_ertamment. Furthermore, there are many imaginative and
st1mulatmg games that, like the Tower of Hanoi have a definite
educ_ational val�e. Other games can teach or help to develop attributes
rangmg from simple physical manipulation and co-ordination skills to
t�e �ental dis�iplines required to find solutions to both puzzles ;nd
s1tuat10ns provided by the computer. There are, for example, many
chess-pl�ymg prog��ms of a formidable standard, and although they are
(a! the time of wntmg!) only available on other microcomputers, they
w1_ll undoubtedly soon be available for the Orie. (In a short while you
might even be writing your own games programs.)

The presence of an Orie in the home means that educational activities
need. not be restricted to schools and colleges. Computer assisted
learnmg packages �ave been available for some time on other computers
and are already bemg converted for use on the Orie. These can be used
just as eff�ctively at home as at school. Computer assisted learning is not,
however, mtended to r�place teachers, but to assist them by providing
another tool. In a post-mdustrial society (it is often claimed that, just as
the country. w�nt throu?h an industrial revolution during the last
century, so It 1s now gomg through a technological and information

10

revolution), it is important to expose everyone, as early as possible, to
the current technology. Only in this way will young people today be
made aware of the possibilities presented by modern electronics, and be
in a position to take advantage of the potential of computers. The
presence of an Orie computer as an everyday item in the home or school
can help achieve this objective.

In schools, microcomputers have many valid uses, ranging over
computer assisted learning, instructional programs, and the use of quiz
programs. In higher education, the Orie is ideal for activities such as
Sixth Form and undergraduate programming projects.

Use of the Orie as a business aid is, at least for the time being,
somewhat limited. Most, but by no means all, business applications
require the speed capabilities of a floppy disk storage unit - and the Orie
(at the time of writing this book) has no such peripheral. We understand,
however, that disk drives will be available shortly. When all of these
additions are available, the Orie will be capable of most business
applications.

For any activity where large amounts of information have to be
stored, and certain items have to be retrieved (for example, examining
the stock-levels of individual items), it is almost essential to use a disk
rather than a cassette unit for storage. This is not only because a disk has
a greater storage capacity, but also because it permits an item of
information to be got out of storage or 'accessed' much more rapidly.
Any item stored on a disk can be accessed almost immediately regardless
of its position. This is because the 'read head' on a disk unit can move
over the surface of the disk to the required point, and for this reason, a
disk unit is sometimes called a 'random access' or 'direct access' device.
By contrast, using a cassette tape, it is necessary to wind the tape
sequentially until the required point is reached. This, of course, can
mean long and frustrating delays, and is most irritating when repeated
access to information is required.

However, it is nevertheless possible to use the Orie, even without a
disk unit, in a business environment in certain cases. These are primarily
where the whole application is loaded into the computer once only every
time it is used, and where no further access to the tape is required. A
typical example of this type of application is the dynamic spreadsheet
analysis program of the type that was first made famous by VisiCalc.
Here, mathematical formulae and relationships can be defined directly
on the screen and the computer will work out the results. The program is
called dynamic because you can change parts immediately. At the time of
writing this book, there is no such program on the market for the Orie,
but there is little doubt that some enterprising programmer will very
soon produce one!

11

. A par� f�om this last example, all of these activities can be performed
us_mg existmg programs. However, if you learn to program the Orie
microcomJ?uter, you can write your own programs. (It is worth
remembering_ that a number of very successful commercial programs
were first writ�en 1?ecause ordinary people at home, at school or in the
office, w�re dissatisfied with the programs they could buy - so they
wrote their own). Not only can you express your own ideas, but you can
adapt pr�grams that you buy to suit your own requirements more
exactly. Smee the �ric computer is much faster at numerical calculations
than mere p�ople, n would seem sensible to get the computer to do all
your c?mphcated calculations. Besides being used as a source of
entertamment, and of educational and business convenience the Orie
com�uter can also be used, in this new Information Age, to e�tend and
amplify the human brain.
Summary

�he Orie comp�ter is a small microcomputer which currently comes as asmgle 4�K ver�10n. (16_K a�d perhaps 64K versions may also be availableby the tl�e t�is book is prmted.) The word 'micro' is used to describethe physical size of the machine, and particularly the processor inside a�d NOT its . ability to compute. However, the smallness of �microcomputer is what makes its computing power available for use as apersonal tool at home, at school or in the office. This smallness is a directr�sult of recent technological developments stimulated mainly by therivalry between the world's major nations. The Orie can be used in ma�y ways, but its main areas of applicationseem to be for personal entertamment and education with a certain andlesser amount of business applications likely to <levelop. Computerpro_grams can already be bought to perform many tasks in these areas. T�is allows the Or_ic �o be usefully employed as soon as it is acquiredwithout any expertise m programming being necessary. Clearly, as timeprogresses, more and more programs will become available.
�h� capabilities ?f the Or�c can be extended in a variety of ways byacqumng further umts or peripherals, such as a printer, which can thenbe attached to the computer and used in conjunction with it.

12

Chapter 2

Using the Orie

Switching on

The Orie must never be attached directly to the mains power supply. To
turn it on, it should first be connected to the supplied power transformer
unit, and this in turn plugged into the mains in the usual manner. There
is no ON/OFF switch on the Orie.

However, before you can do anything meaningful with the computer,
it must also be attached to a display screen so that you can see what you
are doing. This may be either a domestic television set or an industry
monitor as described in Chapter 1. Most people will use their own home
television set. Although it is preferable to use a colour set, in order to
gain the full benefit of the colour capabilities of the Orie, you can also
use one of the more modern black and white sets. A portable black and
white set has the added advantage of being easily moveable to any
location in the building without being excessively expensive (about £60,
for example). And although you lose the use of colour with a
monochrome set, many people think that the definition of the
subsequent black and white image is better than that on a colour screen.
A connection cable is provided with the Orie. It fits into the socket on
the left-hand side of the rear panel of the computer, and the ordinary
aerial socket on the back of the television set.

Once the connections have been correctly made, signals produced by
the Orie can be seen as a picture on the television screen. To begin with
you may get a weak picture of the channel last viewed on the set; that is,
BBC 1 or ITV. You must now tune the set into the frequency used by the
Orie. A picture will form when you tune around frequency 36. It will
show a white background with black text. Both of these colours can be
changed by using the INK (for the text colour) and PAPER (for the
background colour) commands. More on these later.

The initial display from the Orie is shown in Figure 2.1. The top line
names the version of BASIC; that is, ORIC Extended BASIC, version
1.0. We will learn more about BASIC in Chapter 3. The second line is a
copyright notice from Tangerine. Below this is a line informing you of
how much computer memory is free, or available, for use - in this
instance, 47,870 bytes. The amount will vary depending on the size of
the machine you are using, although at the time of writing only the 48K

13

version has been released. Finally, the system's 'Ready' prompt is given.
This prompt is there to show you that the computer is ready for another
command. It will appear at the left-hand margin every time that the Orie
has finished a task.

. Below this is a flashing block, known as the cursor. While the prompt
will always show against the left-hand margin, the cursor can appear
anywhere on the screen. It is there to show you precisely where the next
letter you type will appear on the screen. Test this by pressing the
<SPACE BAR> a few times, and then the letter 'A'. You will see that
the cursor moves away from the margin as you enter the spaces, and that
an 'A' will appear at the point of the cursor when you press the 'A' key.

The screen

The letters, symbols and numbers that you can type from the keyboardare all called 'characters'. The central square of the display is wideenough to take 38 characters on a single line. Once the line is full up with38 characters, the cursor automatically moves to the beginning of thenext line.
The display area can hold 26 lines, each of 38 characters. A charactercan therefore be placed in any of 26x38 (=988) positions on the screen.

Figure 2.1 Screen display when the Orie is switched on.

14

(Although the screen actually has 40 columns, usual!� only 38 of these
can be used.) When the bottom line of the screen is full, the screen
contents automatically shift up by one line giving a new blank bottom
line. This is called 'scrolling upwards'. The previous top line disappears
off the top of the screen.

The keyboard

The keyboard is very much like any ordinary typewriter keyboard. It is
known as a QWERTY keyboard because of the organisation of the top
row of letter keys, reading from left to right.

The keys consist of letters, numbers and symbols. There is also a
space bar which produces the spaces between words. Using the keyboard
is just like using an ordinary typewriter. There are, however, a number
of special features which this section will explain.

Notice to begin with that there is no <SHIFT LOCK> key. All the
characters that you type in at the keyboard will be displayed on the
screen in capitals. This is because the BASIC programming language
only understands capital letters. By using the <CTRL_> key, Y?U c�n,
however, make the Orie behave like an ordinary typewriter; that 1s, wnh
lower case characters as the norm, and uppercase characters when
shifted.

The <CTRL> key is located at the left of the middle row of letters.
This is a special computer key. It is used in conjunction wit� �ther keys
to produce a special effect other than a normal charac_ter. This is done _by
holding down the control key with one hand and typmg a character wnh
the other hand. A table of control characters, as they are called, is shown
in Figure 2.2.

<CTRL/T>
<CTRL/P>
<CTRL/F>
<CTRL/D>
<CTRL/Q>
<CTRL/S>
<CTRL/]>

<CTRL/C>
<CTRL/J>
<CTRL/L>
<CTRL/M>
<CTRL/N>

Caps lock
Printer
Keyclick
Auto double height
Cursor
VDU
Protected column (far left)

Break from program
Line feed
Clear return
Carriage return
Clear row

Figure 2.2 Table of Orie control characters.

15

To use the Orie keyboard like a typewriter keyboard, press <CTRL/T>
(this is the standard method of indicating that the CONTROL key and
the named character key must be pressed simultaneously, and will be
used throughout this book). After you have pressed <CTRL/T> the
keyboard will produce lowercase characters normally, and uppercase
keys when shifted. The 'T' stands for Typewriter mode. You will learn
more about modes later. <CTRL/T> is a toggle switch. Press it once
and you enter typewriter mode; press it again and you leave typewriter
mode. Notice that when you leave typewriter mode a little message
saying 'CAPS' appears in the top right-hand corner of the screen. Apart
from when you first turn the computer on and are automatically in CAPS
mode, this message will always tell you when you have moved from
typewriter to CAPS mode.

Other useful toggle switches accessed with the CONTROL key
include <CTRL/F>, which turns OFF or ON the little click you hear
when you press a key; and <CTRL/Q>, which turns the flashing cursor
ON or OFF. <CTRL/D> is supposed to produce double height
characters, but on the Orie used for this book, it merely produces two
lines of the normal height!

<CTRL/C> is a very important command. You can use it if you
want to stop the computer while it is working. It makes the computer
break out from the current program that is in operation. When you do
this, you will find that the program stops operating immediately, and the
screen displays something like the message:

BREAK IN 8�
Ready

The number is the line of the program that was being executed at the
moment you pressed <CTRL/C>. The Ready message tells you that the
Orie is ready to accept another command.

Stopping a program may sound a strange thing to want to do, but in
practice you will find that you need to use it quite frequently. It is
particularly useful when you start writing and testing your own
programs. Using <CTRL/C> on its own will not harm the program that
is in the computer's memory; indeed you can restart the program from
the precise point at which you broke out by typing:
CONT <RETURN>
If you type:

RUN <RETURN>

then the program will restart from the beginning.

16

Finally, note <CTRL/L>. This command clears t�� sc�een and
places the cursor in the 'home' position. The home position 1s a term
often used to describe the top left hand corner of the screen.

There are several other keys that also deserve attention. These are the
<RETURN> key (situated to the right of the middle row of letters); the
 key (situated to the right of the top row of letters); and the four
<ARROW> keys (situated on either side of the <SPACE BAR>). We
shall look at the and <ARROW> keys more closely in the
section on editing later on in this chapter.

The <RETURN> key is in many ways similar to the carriage-return
key on a typewriter since it makes the cursor (the flashing block th�t tells
you where you are) move down one line and to the left-hand margm. On
the Orie, however, you also use it to tell the computer that you are
satisfied with what you have typed and that you want the computer to do
something with it. In other words, pressing the <RETURN> key enters
what you have typed into the computer and requires the Orie to take
some action as a result. For example, if you have just typed an
instruction, pressing the <RETURN> key instructs the computer to
obey that instruction. . .

Finally, there are some other features that are best associated wit:11
this section on the keyboard. First of all, note that the keyboard 1s
designed with an automatic repeat function. This means that if you hold
down any key on the keyboard for longer than approximately one
second, then that key will repeat automatically.

Note also that on the underside of the Orie, approximately
underneath the 'I' key is a RESET button. Unless you have an
exceptionally tiny finger you will need a pen or pencil or other similar
shaped implement in order to reach it. This is done on purpose. �he
RESET button is an emergency button to get you out of never endmg
loops. You will understand this better after you have read Chapte_r 3 on
programming. However, a never ending loop _may be caused 1f Y?U
incorrectly instruct the computer to do the same Job over and over agam,
automatically and without stopping. The problem is that you can't give
the computer any new instructions, like 'stop', until it finishes its
current job: but you've already told it never to finish! The RESET
button does not switch off the power, but simply stops the execution of
the program.

However, we recommend that (wherever possible) you always use the
alternative method that involves holding down the key marked 'CTRL'
and pressing the 'C' key simultaneously, as described earlier. This is
because on the one hand it seems a waste of time and effort turning the
computer over to get at the RESET button when <CTRL/C> has a

17

similar effect; and because on the other hand, and perhaps more
importantly, the CONT command will probably not work after a
RESET. The likely failure will be caused by the Orie attempting to
continue from the line in which it stopped, and thereby failing to take
into account the logic of earlier commands. In other words, trying to
CONTinue after a RESET will probably cause an error in program logic.

Finally, approximately underneath the semi-colon key, is another
tiny hole in which a very small brass screw is visible. This is used to fine
tune the colour signals sent to the television set.

Loading a program

Probably the most enjoyable and painless way to become familiar with
the Orie and its keyboard is to use them to play a game that requires
responses from the keyboard. A growing number of games are already
available for this.

To load any program - irrespective of its name, from a cassette unit
to the Orie, connect the player/recorder to the computer and insert the
cassette. The biggest criticism levelled against the early Orie computers
was that the company seemed to make it difficult for new users to
correctly attach a cassette player/recorder to the computer. To begin
with, Orie Products International did not supply any connecting lead.
Then, after much adverse criticism, including:

It's disappointing that Orie don't supply a cassette lead with the
computer. There's nothing more annoying than finding you can't
just 'plug in and go', but that you've got to visit the hi-fi shop first
to buy extra leads if you want to Save or Load your programs.
Which Micro& Software Review, February 1983

Orie began to provide a lead. But for some reason the lead is a DIN to
DIN lead, rather than the standard DIN (at the computer end) to jack
plugs (at the recorder end). Let us assume, however, that you have either
purchased, or Orie has started to provide, a standard connecting lead
with three jack plugs at the recorder end. Insert the computer input lead
into the earphone socket (usually labelled 'ear'), and the computer
output lead into the microphone socket (usually labelled 'mic'). The
third and smaller pin will fit into the socket labelled 'remote', but note
that some cassette player/recorders do not have this socket. If your
cassette unit does have this socket, it can be used by the Orie to control
the unit 'remotely'. If you do not have a remote socket, it will not affect
the loading and saving of programs other than that you will have to
operate the cassette recorder manually.

18

Let us pretend that you have a cassette with a recording of all the

programs that are used in this book. One of the programs is a game

known as the Tower of Hanoi, which is called simply 'Tower' on the

cassette. To load this program into the computer, first make sure all the

connecting leads are correctly attached. Rewind the cassette to the

beginning (you will have to remove the remote pin to do this), and then

press the PLAY switch. At the keyboard, on the line immediately below

'Ready', type:

CLOAD "TOWER" <RETURN>

As soon as you press <RETURN>, two things will happen. The Orie
will switch on the cassette unit automatically, and the message
'Searching' will appear at the top-left of the screen (see Figure 2.3). This
means that the Orie is Searching along the tape for the program called
TOWER. When the Orie finds the program named in the inverted
commas, the message at the top of the screen changes to:

Loading .. Tower

As soon as the loading is complete, the loading message disappears from
the top of the screen, and the Ready prompt appears by the cursor
position. If your recorder has a remote function and the relevant
connection is made to the Orie, the cassette motor should now stop
automatically. If not, you must now press the STOP switch.

If you do not know the name of a particular program that is �tored on
the cassette, but simply wish to load the next program that 1s found,
enter:

CLOAD "" <RETURN>

The Orie is able to send information to, and read information from, the
cassette at two different speeds. The slower speed is available for greater
security during transmission, and is less likely to produce errors. F�r
this reason we recommend that you use the slow speed. The process 1s
identical, but with the addition of ',S', thus:

CLOAD "FILENAME",S <RETURN>

Despite the security of the slower transmission speed, the Orie can be

very sensitive to the volume setting on your cassette player/recorder. If

the volume is set too high, or too low, you will be unable to load yo1:1r

program from the cassette. If the volume is very wrong, you will

probably get a message like the following:

FILE ERROR/ LOAD ABORTED

19

Figure 2.3 Screen messages while loading from tape.

20

(Note, however, that the volume setting can be so very incorrect that the
Orie will fail to register anything. If this happens, it will simply continue
'searching' without any hope of ever finding anything. If it happens to
you, the only thing you can do is press the RESET button underneath
the Orie and st-art again. In this instance, <CTRL/C> has no effect.)

If it is only a little way out, it may appear at first as if the loading has
been successful. However, in these circumstances it is quite likely that
one or two spurious characters or alterations to the text may have been
introduced to the program during the loading procedure, but not enough
to be registered by the Orie as errors during the loading. The first that
you will know about these errors is when an appropriate Orie error
message appears on the screen when you try to run the program, such as:

?SYNTAX ERROR IN 8�
Ready

This message tells you where the Orie has first detected an error in the
logic of the program. There may be others that it hasn't yet found. You
may then correct all such errors using the editing features that we shall
look at in the next section, or you can try to load the whole program
again, but correctly. The problem with these small errors is that they are
enough to stop the program from running, but not enough to make it
clear that the errors were introduced during the loading process rather
than that they are inherent to the original program on the cassette tape.
When this happens, particularly when you first start to use the Orie, it is
easy to believe that your new program simply doesn't work; and this in
itself can be very annoying if you've just spent something between £5
and £50 at the local computer store! We suggest, then, that the first
program you try to load from cassette into your new Orie is one that you
are certain is completely accurate on cassette.

Then adopt the following procedure:

1. Ensure that the cassette player/recorder and the television set are both
correctly attached to the computer.

2. Ensure that the cassette player/recorder, the computer and the
television set are all turned ON.

3. Wind the cassette to the beginning.
4. Set the volume control on the recorder to approximately mid-way.
5. Enter: CLOAD "" <RETURN>
6. Press the PLAY switch on the recorder.
7. If the loading is correct, mark the volume level on the recorder and

try not to move it- ever!

21

8. If the loading failed, rewind the cassette, re-enter the load command,
set the volume level on the recorder to a slightly lower level and try
agam.

9. Repeat this last stage, with the volume slightly lower each time, until
the loading is successful. Then repeat stage 7.

Once the program has been loaded successfully, you can then run it
merely by typing RUN, and entering the command by pressing the
<RETURN> key. If you have loaded a games program, the program
itself should now give you instructions on how to play the game. These
instructions, or any set of messages between the computer and user, are
called a 'dialogue'. Examples of this dialogue from the program called
Tower are shown in Figures 2.4, and 2.5.

Using the program name in the loading instruction saves time
because the computer can ignore other programs which appear before it
on the tape. But notice that if you ask for a program that does not exist,
or if you have typed its name wrongly, you may have to wait a long time
while the computer searches fruitlessly. To avoid these long waits you
may consider using the shorter Cl2 cassettes and having only one or two
programs on each cassette. Alternatively you can keep a written record of
the general location of the beginning of each program (if your cassette
unit has a counter, you can keep an exact record). Finally, you can also
detach all the connections from the recorder and use the cassette as a
simple voice player/recorder unit to speak the name of each program just
before it starts on the tape. This way you can use the fast forward and
back facilities of the cassette unit to listen for the name of the program
you want. When you have found the program you are looking for,
reconnect the unit to the Orie, enter:

CLOAD "" <RETURN>

at the keyboard, and press the play switch on the cassette unit. The Orie
will load the very next program it finds on the cassette.

As a general rule, it is useful to develop individual programs,
particularly if they start to get quite long and elaborate, on individual
tapes. When you have completely finished the program, you may then
store it with several others on a single cassette.

Editing

'Editing' is the name given to correcting or altering a piece of typing.
The Orie has excellent facilities. If you realise that you have made a
typing mistake immediately you have made it, the simplest way to put it
right is by using the key. Pressing it once makes the cursor go

22

Figure 2.4 Dialogue from the Tower of Hanoi program.

Figure 2.5 Dialogue from the Tower of Hanoi program.

23

back a space, while at the same time deleting the character it moves over.
You can then type the correct letter.

If you have already entered the line of typing with the mistake in it,
you would normally have to re-enter the whole line. Let us say that you
are typing a program with the following line:

11� PRINT "WHAT APPEARS TO BE THE MATTHER?"

Once you have typed <RETURN> at the end of the line, you will be
unable to use the key to correct the word 'MATTHER'.
Nevertheless, you still need to remove the incorrect 'H'. You may decide
to simply retype the whole line. To do this, re-enter the line correctly,
making sure that you start the line with the correct line number. Use this
method with care. Every time you start a line of text with a number, the
BASIC interpreter inside the Orie will assume that it is a program line;
and that if another with the same number already exists, the new line is
to replace it completely. Thus if you enter:

1�� PRINT 'WHAT APPEARS TO BE THE MATTER?'
<RETURN>

you will not have changed the incorrect line at llO, but will have
�hanged whatever used to be line 100. Line llO will remain exactly as it
IS.

Similarly, if you enter a line number without any text you will delete
any existing text on that line (what you will be doing is instructing the
Orie to replace that line with nothing- which is exactly what it will do!).
Thus, if you enter '100', then realise that you really want to change line
110, and immediately type '<RETURN>' so that you can start typing
line llO, what you are doing is deleting line 100.

It is a better idea to get used to using the Oric's Editor. An Editor is a
small program or routine that will specifically enable you to edit text on
the screen. (It is the very simplest and very earliest form of word
processor.) To use the Editor, simply type 'EDIT' and the line number,
thus:

EDIT 11� <RETURN>

The screen will print out the whole of the line as follows:

EDIT 11 �
11� PRINT "WHAT APPEARS TO BE THE MATTHER?"

Before we go any further, it is a good idea to grasp the concepts behind
the Oric's editor. Some people find it complicated, but if you can
understand the basic principle behind it, the Orie editor becomes very

24

simple and very logical. But first we must understand a new word:
buffer. Buffers are used extensively by computers and are no more and
no less than small and temporary storage areas for small amounts of data.
The Orie editor has its own 'copy buffer' capable of holding up to 78
characters. (Incidentally, this is the maximum length of any line
allowable by the Orie. If you try to type in more than this, the Orie will
give a 'ping' warning on the 76th, 77th, and 78th characters, and will
finally, on the 79th character, produce a back-slash and cancel the line.
Try it. Since you cannot have a line of more than 78 characters, there is
no need to have an editing copy buffer of more than 78 characters.)

When you use the editor, all you need to remember is that
<CTRL/A> will copy the character currently under the cursor into the
copy buffer. At the same time, <CTRL/A> will move the cursor
forwards across the screen by one character. (<CTRL/A does not affect
the characters it passes over in any way. They are still there to be copied
again as often as you like until the copy buffer is full.) You may then
copy the next character into the buffer, or you may ty e directly into the
buffer. If you choose to type, then you will overtype the existing
characters on the screen, and will not be able to copy them subsequently
with <CTRL/A> because they won't be there to copy. The second point
to remember is that the four <ARROW> keys will move the cursor to
any position on the screen without having any effect on the characters
showing on the screen. It thus follows that there is nothing to stop you
using this feature to move the cursor to a completely different line, as
long as it is visible on the screen, and copying text from an earlier line
into the current line to save you typing it all out again. As you get used to
this, you will find that it is particularly beneficial when you are typing in
your own long and complicated programs. Finally, you tell the Orie that
you do not wish to enter any more characters into the copy buffer by
pressing <RETURN>.

Let us now try to use some of these features. Enter the incorrect line
as shown above. Press <CTRL/L> to clear the screen and remove any
confusing elements. Now type:

EDIT 11 � <RETURN>

The screen should display the whole of the line as follows:

EDIT 11�
11 � PRINT "WHAT APPEARS TO BE THE MATTHER?"

Now use <CTRL/A> to move the cursor to the required position over
the incorrect 'H'. Do not press <CTRL/ A>. Remember that every time
that you do, and with every character you have passed over so far, you

25

have taken a copy into the copy buffer. But now you do not want to copy
the 'H'. Instead, use the <RIGHT ARROW> key to skip over the 'H'.
After this you need only continue to press <CTRL/A'.> until you reach
the end of the line, followed by <RETURN> to tell the Orie that you
have finished copying into the copy buffer. The cursor will now move to
the next line on the screen. Enter:

LIST 11� <RETURN>

and you will see the corrected line, thus:

11 � PRINT "WHAT APPEARS TO BE THE MATTER?"

In other words, if you want to delete an unwanted letter or letters from a
line that you have already typed, simply copy into the copy buffer all the
correct characters with <CTRL/A>, and use the <ARROW> keys to
skip over and leave out the errors. Let us say, however, that you now
want to change the line:

11� PRINT "WHAT APPEARS TO BE THE MATTER?"

to

11� PRINT "WHATEVER APPEARS TO BE THE MATTER?"

This time we need to insert characters rather than merely delete the 'H'
in 'MATTHER'. Proceed as above until the screen shows:

EDIT 11�
11 � PRINT "WHAT APPEARS TO BE THE MATTER?"

Now press <CTRL/A> until the cursor is over the space between
WHAT and APPEARS. If you press <CTRL/A> again, you will copy
the space into the buffer when what you really want to do is enter the
letters EVER. But if you simply type in EVER, you will remove the
space and the letters APP from the screen; and once gone, those letters
will no longer be available to copy with <CTRL/ A>! You actually have
a choice of two options, although each one actually does exactly the same
as far as the Orie is concerned. Remember that the <ARROW> keys do
not affect the text at all. The first option, then, is to move the cursor
down, or up, but specifically to a blank area of the screen. At this point
type in the letters EVER. Finally, move the cursor back up to line 110
and continue pressing <CTRL/A> from where you left 0ff. When you
have finished copying and entering into the buffer, clear che screen (it's
not necessary, but it does prevent any confusion) and type:

LIST 11 � <RETURN>

26

You should now see the full and correct line, thus:

11� PRINT "WHATEVER APPEARS TO BE THE MATIER?"

The second option has the same effect, but may appear more confusing
until you are sure of what you are doing. This time, simply move the
cursor backwards with the <LEFT ARROW> key for as many
characters as you wish to insert. When you have done this, type in the
new letters EVER. You will in fact remove the word WHAT from the
screen, but since you have already copied this into the buffer, it doesn't
matter. Continue to copy the rest of the line with <CTRL/ A>.

Note that the EDIT command does not work correctly if the cursor is
on the bottom line of the screen. You· must either use <CTRL/L> to
clear the screen and take the cursor to the top left-hand corner; or you
must type in:

CLS <RETURN>

This has a similar effect except that since it is a BASIC command, the
Ready prompt appears at the top of the screen to tell you that the Orie
has obeyed your instruction and is ready for the next one. Alternatively,
you could simply use the <ARROW> keys to move up the line on the
screen that you wish to edit.

The Orie also has two other features that can be of great benefit
during editing sessions. These are the LIST and program trace
commands. We have already come across the LIST command. It allows
you to look at all or parts of the program currently stored in memory. If
you enter:

LIST <RETURN>
,,

all of the current program will scroll up across the screen. However, if
the program is more than 24 lines long, you will lose the early lines off
the top of the screen before you have time to examine them. LIST also
allows you to look at parts of the program by using the format:

LIST fromline-toline <RETURN>

Thus, the command:

LIST 1�-1�� <RETURN>

will display on the screen all and only the lines in and including the range
of 10 to 100. This can be particularly useful not only when you are
examining your programs, but also if you wish to create a new line from
existing old lines by copying the relevant parts into the copy buffer.

The trace feature provides the ability to trace the logic of a program

27

while it is being executed. The two commands are TRON and TROFF,
used within the program to turn the trace ON and OFF. Let us say that
you have a program that simply doesn't do what it is supposed to. By
turning on the trace feature, you can make the Orie display on the screen
the precise order in which it obeys the instructions of the program as it
executes them. In this way you can see exactly where the error occurs
and then make the necessary amendments. Enter the following program:

1�1 =I+ 1 <RETURN>
2� PRINT I <RETURN>
3� WAIT 2�� <RETURN>
4� GOTO 1� <RETURN>

Now type in:

RUN <RETURN>

and you will see the Orie start counting (see Figure 2.6). You will need to
use <CTRL/C> to stop the program when you have seen enough. Now
add the line:

5 TRON <RETURN>

and run the program again. This time you will see the Orie showing you
the sequence of line numbers it obeys (see Figure 2.7) as it executes
them.

Giving simple instructions to the Orie

As we have already seen, a 'mode' is an operational condition under
which a certain set of rules are obeyed. Most computers can operate in
several different modes. Apart from the typewriter mode that we have
talked about earlier, there are two other modes that you must
understand. These are IMMEDIATE mode and DEFERRED mode. If
you enter text into the Orie in a line starting with a number, the
computer will store that line without acting on it. That is, if you start a
line with a number, you are automatically using DEFERRED mode. In

this case, the computer assumes that you have typed a line of a program
that you will want to RUN later on in conjunction with many other lines.

If you do not use a number at the beginning of the line, the computer
will automatically enter IMMEDIATE mode. In this case, the Orie will
act on the instructions it receives immediately you press the
<RETURN> key. In the rest of this chapter we will look at using the
computer in IMMEDIATE mode. In Chapter 3, we will begin to look at
using DEFERRED mode: that is, at programming.

28

Figure 2.6 The Counting program- without 'trace on' (TRON).

Figure 2. 7 The Counting program - with 'trace on' (TRON).

29

Generally speaking, what a computer does in most situations is to
accept and store information of some kind, manipulate or process it, and
then give out the results in some appropriate form. This can be
illustrated by instructing the computer to do something with a set of
characters. Such a set of characters is called a 'string'. In the B ASIC
language the dollar sign$ is used to tell the computer that you want it to
treat something as a string. For example, the string of characters
'N ICHOLAS AND JONATHAN' can be stored in the Oric's memory
by typing and entering the following:

A$= "NICHOLAS AND JONATHAN"

You will, of course, remember that you have to press the <RETURN>
key to instruct the computer to obey the commands you give it. Pressing
<RETURN> causes the Orie to execute this instruction, which it does
by giving the name A$ to a part of its memory in which it stores the
string of characters between the inverted commas. This is illustrated in
Figure 2.8. This BASIC language instruction is equivalent to the plain
English instruction: 'store the string of characters between the inverted
commas in 'a part of the memory, and give it the name A$'. N ote that
spaces count as characters just as letters do.

When you press <RETURN> and the command is executed, there
is no visible outward sign that anything has happened, other than the
appearance of the Ready prompt at the beginning of the next line. This
means that the Orie is ready to accept your next command. However,
there is now an area of the computer memory that is storing the phrase
'NICHOLAS AND JONATHAN'. To demonstrate that the instruction
has been correctly obeyed, you now need to know how to get at the
information that has just been stored. You can print out the information
stored in the part of the memory given the name A$ by typing and
entering:

PRINT A$ <RETURN>

Memory A$

N�HOLASANDJONATHAN

Figure 2.8 A string stored in memory.

30

In response, the computer will then print on the screen:

NICHOLAS AND JONATHAN
Ready

This BASIC instruction can be understood as 'print out what is stored in
A$'.

You can instruct the Orie to find the number of characters stored in
the area of memory called A$ with the LEN instruction, where LEN
stands for 'length'. For example, suppose you n�w type:

PRINT LEN(A$)

When you press <RETURN>, the number '21' will appear on the
screen. In this case the 21 characters consist of 19 letters and two spaces.
This instruction can be interpreted as 'print out the length of the string
stored in A$', or as 'print out the number of characters stored in the
string A$'.

BASIC also has some features that enable you to manipulate strings.
The LEFT$ command allows you to pick off a number of characters from
the left of the string. RIGHT$ enables you to pick off a number of
characters from the right of the string. For example, typing:

PRINT LEFT$(A$,8) <RETURN>

Will cause the computer to print the following eight characters from the
left of the string:

NICHOLAS

That is, starting from the left edge of the string known as A$, the
computer will display the first 8 characters.

Similarly, typing:

PRINT RIGHT$(A$,8) <RETURN>

gives the eight characters 'JONATHAN' from the right of the string.
This last instruction can be interpreted as 'print the eight characters

at the right of the string of characters stored in A$'.
Finally, the command:

PRINT MID$(A$, 10,3) <RETURN>

will produce the word:

AND

That is, it will start from the tenth character of the string known as A$
and pick off the next three characters.

31

You can see, then, that BASIC programming instructions are a sort
of shorthand for instructions expressed in English. But because the Orie
cannot think for itself, all of its instructions must be expressed in
precisely the correct way. If there is even a slight error in the way that an
instruction is written, no computer yet available will be able to recognise
it. The Orie will, however, let you know that it doesn't understand what
you are trying to do by printing an error message on the screen. Here are
some examples, with their meanings:

?SYNTAX ERROR (this is a �yntax error, the most
frequent of all errors. Usually caused
by a typing or spelling error, or
simply not knowing the correct for­
mat of the BASIC command)

?CAN'T CONTINUE ERROR (this occurs if you try to continue a
program that has ended, or does not
exist)

?DIVISION BY ZERO ERROR (this occurs if you attempt to divide a
number by zero; which is, of course,
impossible)

A full list of the error codes can be found in the BASIC programming
manual supplied with the Orie.

We have seen how BASIC makes it easy to dissect strings. In the
same way, it is also easy to build them up. To illustrate this you will need
to store at least two character strings. Do this first by typing:

S$ = "SKY" <RETURN>
T$ = "TRAIN" <RETURN>

Now see what you build up from these strings. Try typing:

PffiNTS$+T$<RETURN>

This instruction means 'print the string stored in S$ followed by the
string stored in T$'. It produces:

SKYTRAIN

The following is a more complicated problem, but try to work out for
yourself exactly what it tells the computer to do:

PRINT LEFT$(S$,2) + RIGHT$(T$,2) <RETURN>

The result is 'SKIN'.
Using the same principle, it is possible to get the Orie to produce a

number of other words from the two strings stored as S$ and T$. Try

32

and make the computer produce the following: 'INKY', 'TRAY',
'STRAIN', 'STINKY'.

The Orie as a calculator

The Orie can be used as a calculator. If it seems like a rather expensive
calculator, remember that this is only one, and perhaps the least useful,
of ways in which it can be used.

As you will by now have realised, the number keys are situated on the
top row of the keyboard. There are also five arithmetic keys for you to
remember. The four main ones are:

+ means 'add to'
means 'subtract' or 'take away'

* means 'multiplied by'
/ means 'divided by'

The fifth instruction is the more advanced arithmetic function of
exponentiation. The symbol to use is' j '. This function is used to raise a
number to the power of a second number. Thus, 'squaring' 6 is the same
as raising it to the power of 2, which is of course 6*6, or 36. The way to
enter this is:

6 j 2

If you wish to 'cube' the figure; that is, raise it to the power of 3

(6*6*6), use:

6 j 3

For the time being, however, we shall concentrate on th� four ma_ior

functions. The symbol * is used for multiplication to �void confusion

with the letter X. The symbol / is used because there is no -;- on the

keyboard, and the alternative fraction display must be expressed on a

single line. . .
Arithmetic calculations can be performed by instructions such as the

following:

PffiNT2+3+4<RETURN>

The answer 9 is immediately displayed on the next line. A more
complicated calculation could be:

PRINT (2*3+4)/5 <RETURN>

The answer is 2. How you express the calculation instructions is very
important, for the computer will always obey a certain sequence when it
performs the arithmetic. This sequence is the generally accepted

33

sequence taught in schools and should not, therefore, cause anyproblems.
T�e. s:1m is performed basically from left to right; but multiplicationsand div1S1ons are performed first. Thus:

1�-2*3

will first do 2*3, and then subtract the result from 10. The answer is 4(and not,_ as yo� might otherwise think, 24). You can change thissequence if you wish to by using brackets. Brackets are always calculatedfirst. Thus, if you type:
PRINT (1 �-2) * 3 <RETURN>
the answer will now be 24.

Numbers can also be stored by using lines such as the following:
A = 3 <RETURN>
B = 4 <RETURN>

Noti�e that with numbers, you do not need to use the$ symbol for thelocat�on. What you have done, of course, is to store the value of 3 at alo�ation ca�led A, and the value of 4 at a location called B. The result ofthis operation on the content� of memory is represented in Figure 2.9.you can now perform calculations on the contents of these locations evenif you do not know what the actual values are. For example:
PRINT A <RETURN>
gives:

3

Similarly:
PRINT A* B + 8 <RETURN>
gives:

2�

Memory A B

DO
Figure 2.9 Numbers stored in memory after A= 3: B = 4.

34

Summary

A good way to become familiar with the Oric's keyboard is to run a
games program that requires responses to be made from the keyboard. A
program can be loaded into the computer's memory from a cassette by
typing a CLOAD command. Once a program is loaded, it can be RUN.
So, when starting to use the Orie computer, it is a good idea to practice
with programs already recorded on cassette.

Most of the keys on the keyboard cause the corresponding symbol to
appear on the screen when they are pressed, as one would expect.
However, the <CTRL> key pressed in conjunction with a few other
keys will produce different results.

Instructions can be given directly to the Orie in its own BASIC
language. With the aid of a small repertoire of instructions it is able to
make the computer perform such diverse activities as storing and
manipulating words, and storing and performing calculations on
numbers.

Self-test questions

1. What is the instruction which starts the procedure for loading a
program into the Orie computer from a cassette?

2. How do you start the Editor so that you can edit a program line?
Using as few instructions as possible, change the line:

1 �� THE ASCENT OF MAN
to

1 �� THE ANCIENT OMEN

3. Make the computer store the words 'LEAD' and 'POSE' in its
memory. Using these two stored words only, write the instructions
that will cause the Orie to display:
PLEAD
POSE
PLEASE
LOSE
ADDLE

4. Make the Orie store the numbers 4 and 5 in its memory. Using these
stored numbers only, enter the instructions necessary to make the
computer produce the results 16, 24 and 36.

35

Chapter 3

Introduction to
•

progra1n1n1ng

Writing and running a simple program

Towards the end of Chapter 2 we looked at using the Orie in
IMMEDIATE mode; that is, we gave it single line instructions that were
to be obeyed immediately. In this chapter we shall examine the
alternative DEFERRED mode, which is another way of saying:
'programming'. In DEFERRED mode, all instructions must be on a line
starting with a number. The computer will then store these commands
until it is later told to RUN them. At this point it will obey each stored
line of instructions in the order of the numbers at the beginning of the
line.

A program, then, is a sequence of commands for the Orie to obey.
The language in which the commands must be written in order that the
Orie can respond to them is BASIC, and a few examples of individual
BASIC commands have already been introduced in the previous chapter.
BASIC is a simple programming language that was devised at Dartmouth
College in the USA, and which first came into use in the early 1960s. It
was intended to be easy to learn and easy to teach: and, indeed, its
overwhelming popularity as a language for microcomputers stems from
the fact that it is very easy to learn.

The Orie first deals with a program by storing it, so that it can then
execute it when instructed to do so. When a program is stored in the
Oric's memory it can be executed as many times as desired, or it can be
modified prior to running it again. When a BASIC command is preceded
by a number, the Orie treats that line as an instruction belonging to a
BASIC program and stores both the number and the command. When
the line is first entered, the command is not immediately executed, but is
stored so that it can be executed later. An Orie program consists of a set
of numbered commands. The numbers give the order in which the
commands are to be executed when the program is run. The command
or commands on the line with the lowest number are the ones to be
executed first, and so on in ascending order. In fact, the instructions that
make up a program can be entered in any order because the Orie uses the
line numbers to put the instructions in the correct order.

37

To summarise this: a program line consists of a number followed by a
command or commands; the Orie stores these instructions, and puts
them in the correct order by using their line numbers; a program consists
of a set of instructions. When a program is executed, each instruction is
dealt with in sequence by executing its command part.

Now let us write a short program to store the three words 'THE',
'DOG', and 'SHOW', and to use these stored words to write out the
phrases 'THE DOG SHOW', 'SHOW THE DOG' and 'DOG THE
SHOW'. Before starting it is a good idea to type:

NEW <RETURN>

because this clears any program previously stored in the Orie. Then type
in the following program exactly as shown, pressing the <RETURN>
key at the end of each line to cause it to be stored in the computer's
memory (note that in all of the example programs included in this book,
the symbol '(SPC)' indicates that you must here type a single blank space
- if more than one 'space' is required, the symbol is '(nSPC)'; for
example, '(3SPC)'):

1� A$= "THE(SPC)" <RETURN>
2� 8$ = "DOG(SPC)" <RETURN>
3� C$ = "SHOW(SPC)" <RETURN>
4� CLS <RETURN>
5� PRINT A$+ 8$ + C$ <RETURN>
6� PRINT C$ +A$+ 8$ <RETURN>
7� PRINT 8$ +A$+ C$ <RETURN>

In this program, the three words are stored at lines 10 to 30. Note that a
space is included at the end of each word to act as a word separator when
the phrases are printed. Line 40 causes the screen to be cleared when
executed. CLS is the BASIC command to erase everything currently on
the screen. It is a good general rule to get into the habit of using this
command at the beginning of all of your programs.

Lines 50 to 70 cause the required phrases to be printed. Figure 3.1
shows the consequence of executing each instruction of the program.
The result of executing the program is the cumulative effect produced by
executing all of its instructions.

To demonstrate that the program has been stored by the Orie, type:

LIST <RETURN>

in response to which the Orie will always produce a 'listing' (a printout)
of the program it is currently storing. Check the listing given on the Orie
screen against the listing above to see that they agree exactly and, if they

38

do, execute the program by typing

RUN <RETURN>

You will then see the results of the program, looking like this:

THE DOG SHOW
SHOW THE DOG
DOG THE SHOW
Ready

Remember that because the program is stored in the Orie it can be
executed or listed as often as you like. If you wish to list only a part, or
just an individual line of the program, remember that you can type LIST
and the line number, or 'LIST from-to'. If a line of the program has been
entered incorrectly, it can be corrected by first listing it on the screen or
using the EDIT command, and then using the normal editing
procedures as described in Chapter 2. For example, if line 20 has been
incorrectly entered, it can be listed by typing:

LIST 2� <RETURN>

PROGRAM

10 A$= "THE"

20 8$ = "DOG"

30 C$ = "SHOW"

40 PRINT "[CLS J"

50 PRINT A$+8$+C$

60 PRINT C$+A$+8$

70 PRINT 8$+A$+C$

MEMORY
CONTENTS
AFTER
EXECUTING
INSTRUCTION

A$

EJ
8$

jDoG I
CS

lsHOW I

Figure 3.1 The result of running a program.

IMTERMEDIATE PRINTED
COMPUTATION ON THE

SCREEN

l Clear the screen

A$+ 8$ + C$ THE DOG SHOW

I THE DOG SHOW I
C$+ A$+ 8$ SHOW THE DOG

I SHOW THE DOG I
8$ +A$+ C$ DOG THE SHOW

I DOG THE SHOW I

39

which could give, say,

2� 8$ = "DIG"

Because this is a short line, it could be corrected most quickly by simply
retyping the whole line. If it were a longer line, you should use the Oric's
Editor as described in the previous chapter. The corrected program can
then be RUN as described above.

To delete a complete line, all that is necessary is to type the number
of the line to be removed followed by <RETURN>.

Try typing:

6� <RETURN>

and then list the program to see the effect it has had. When you have
finished experimenting with the program, type:

NEW <RETURN>

to delete it. After typing this, the LIST command evokes no response.
Try it.

Some more BASIC instructions

In this section we meet a few more BASIC instructions. They are
incorporated in short programs to illustrate their usefulness. The fact
that the <RETURN> key has to be pressed after a command or at the
end of an instruction to cause the Orie to take the appropriate action will
not be mentioned explicitly any more. So, as a last reminder, if you have
typed something out and nothing appears to be happening as you sit and
wait, it may well be that you have not pressed <RETURN>!

Input

Suppose that we should like to modify the program given in the first
section of this chapter so that it accepts any three words we might care to
give it when we run the program, and then prints out the first followed
by the second and then the third; then the third followed by the first and
the second; and finally the second followed by the first and the third.
The new instruction that we need in order to make the program accept
an input is INPUT. When an INPUT instruction is executed it causes a
question mark to be printed on the screen to indicate that a response is
required, and then stops the program execution and makes the Orie wait
until the user types a response which it can accept. Thus, the
instruction:

1� INPUT A$

40

produces the question mark on the screen. If you then type:

THE <RETURN>

the word THE is accepted and stored in A$. So, in this case, the effect is
the same as that of the instruction

1 � A$ = "THE"

The difference is that the latter will assign 'THE' to the variable A$,
whereas the former can assign whatever you type, or 'input' to the
computer, after the question mark.

An example program can be based on the previous program by
replacing the lines that store the three words with three INPUT
instructions - one for each word. When the words have been entered in
this way, lines 50 to 70 will print out the phrases as before. Note,
however, that when a word is entered with an INPUT command,
although you can include spaces at the beginning and end of the word, it
will be very difficult to see them. For this reason it would be bett�r to
include the spaces to separate the words in the PRINT commands. In this
way, the following program for accepting any three words and printing
three phrases involving them is obtained:

1�CLS
2� INPUT A$
3� INPUT 8$
4�INPUT C$
5� PRINT A$ + "(SPC)" + 8$ + "(SPC)" + C$
6� PRINT C$ + "(SPC)" +A$+ "(SPC)" + 8$
7� PRINT 8$ + "(SPC)" + A$ + "(SPC)" + C$

When this program is executed it could result in a dialogue like this:

? THE
? KIT
?BAG
THE KITBAG
BAG THE KIT
KIT THE BAG
Ready

Decisions

The Orie can be programmed to make decisions. This ability can be used
to produce some very interesting and powerful programs. The command
which permits decision-making uses the BASIC words IF and THEN.

41

It has the form:

IF condition THEN command

In the condition part of this instruction, both variables and/or values can
be compared, typically to see if they are the same or if they differ. The
command part must be another BASIC command; for example, an
assignment or a PRINT command. When the IF/THEN command is
executed, the condition part is first tested. Only if it proves positive will
the command part be executed. If the condition part does not hold, then
the instruction part is ignored. An example of this type of command is:

lF N$ = "PASSWORD" THEN PRINT "ACCEPTED"

When this is executed, the Orie tests to see if the most recent assignment
to N$ is PASSWORD: if it is, then ACCEPTED is printed out. If it is
not, nothing is done. A second example is:

IF N$ <> "PASSWORD" THEN PRINT "REJECTED"

In this example the pair of symbols <> means 'not equal to'. (The <
symbol on its own means 'less than', while the > symbol on its own
means 'greater than'. If something is either less than or greater than the
mbject, then the only thing it is not, is 'equal to' the subject; that is, it is
'not equal to'.) Thus, when this command is executed, REJECTED is
printed only if the most recent assignment to N$ is not PASSWORD.

Now consider a short program to create a sum, display it, accept an
mswer to it and decide if the answer is correct or not before printing an
:1ppropriate message. This requirement is also shown in Figure 3.2,
which is an example of a flow chart. The program starts by storing two
numbers in A and B, and then line 30 uses these numbers to print out a
:iuestion about their sum. The question that is printed is WHAT IS
2+ 3? Using a semicolon to separate the items in a PRINT command
�ives a spacing different to that produced when a comma is used. Having
:;et a problem, the program accepts an answer at line 40, storing it in C.
Then in line SO the offered answer is tested to see if it is equal to the right
answer, and if it is, then an encouraging message is printed. The final
line detects when a wrong answer is given and causes the correct answer
to be printed out on these occasions. The program is:

5CLS
10A = 2
20B = 3
30 PRINT "WHAT IS(SPC)";A;"+";B;"?"
4� INPUT C

42

50 IF C =A+ 8 THEN PRINT "GOOD. THAT IS CORRECT."
6� IF C <>A+ B THEN PRINT "NO. THE ANSWER IS";A + B

This program can be adapted to give you more than one attempt to find
the answer to the way illustrated in Figure 3.3 by using the GOTO
command. The command:

GOT03�

instructs the program to go to line 30 and execute that line next. A
program that expects the user to keep attempting to answer until the
correct answer is given is obtained by altering line SO so that it causes the
last line of the program (line 80) to be executed next if the correct answer
is given. The last line supplies the reinforcing message of encourage­
ment. If the correct answer is not provided, then line 60 is executed.
This indicates that the answer is wrong before line 70 causes a jump back
to line 30, so that the question is posed again and a further opportunity
to answer is given. This more sophisticated program is listed below:

5CLS
10A = 2

BEGIN

CREATE SUM

DISPLAY SUM

ACCEPT ANSWER

PRINT "NO" AND DISPLAY PRINT "ANSWER CORRECT"

CORRECT ANSWER

Figure 3.2 Flow chart for simple maths drill program.

43

2� 8 = 3
3� PRINT "WHAT IS(SPC)";A;"+(SPC)";B;"?"
4�INPUTC
5� IF C = A + B THEN GOTO 8�
6� PRINT "SORRY. WRONG ANSWER. TRY AGAIN."
7�GOT03�
8� PRINT "GOOD, THAT IS CORRECT."

A typical dialogue produced by this program coul� be:

WHAT IS2 + 3?
?6
SORRY. WRONG ANSWER. TRY AGAIN.
WHATIS2 + 3?
?4
SORRY. WRONG ANSWER. TRY AGAIN.
WHATIS2 + 3?
?5

GOOD, THAT IS CORRECT.
Ready

PRINT ''NO. TRY AGAIN"

NO

BEGIN

CREATE SUM

DISPLAY SUM

ACCEPT ANSWER

YES

PRINT "ANSWER CORRECT"

STOP

Figure 3.3 Flow chart for improved maths drill program.

44

Now try changing line 30 to:

3� PRINT "WHAT IS(SPC)";A;" +(SPC)";B;

This time, you have not included a question mark to be printed by the
instruction. Notice, however, that the semicolon at the end of the line
'pulls up' the question mark produced by the INPUT command. In this
way you can eliminate the occurrence of double question marks and
make the question and answer sequence more visually acceptable. A
typical dialogue might now be:

WHAT IS 2 + 3 ? 6
SORRY, WRONG ANSWER. TRY AGAIN.
WHAT IS 2 + 3 ? 4
SORRY, WRONG ANSWER. TRY AGAIN.
WHAT IS 2 + 3 ? 5
GOOD, THAT IS CORRECT.
Ready

Repetition

The previous program has shown that the Orie can be programmed to do
things repeatedly by using the GOTO command. The mathematical
problem is posed repeatedly until the correct answer is given. BASIC,
however, has a more direct way to achieve this effect: the use of the
BASIC FOR ... NEXT command. To illustrate its use, enter the
following program:

5CLS
1 � FOR I = 1 TO 16

2� PRINT "JOANNE"
3� NEXT I

This program will cause 'JOANNE' to be printed sixteen times, because
all the instructions between FOR and NEXT are repeated as many times
as directed by the FOR instruction. In this case, line 10 becomes a
counter that goes up by one each time the command 'PRINT
"JOANNE"' is executed. Notice that the program is going round in
circles. This is called a 'loop'. Line 30 instructs the computer to loop
back to line 10 until the counter matches the number specified in the
'TO' statement; that is, 16. At this point, the program will come out of
the loop and go on to execute the next command, if there is one. The
next program illustrates that you can put as many instructions as you
want between the FOR and NEXT statements:

45

5CLS
1 p FOR K = 1 TO 8
2p PRINT "REPETITION NUMBER(SPC)";K
3p PRINT "FRANCES"
4p PRINT
Sp NEXT K

This causes eight repetitions and produces the output:

REPETITION NUMBER 1
FRANCES

REPETITION NUMBER 2
FRANCES

and continues up to the eighth repetition (see Figure 3.4).
Now try a program that accepts a word and spells out its letters one at

a time. The program must accept the word, find its length and then
repeatedly pick out and print the first letter, second letter, and so on, up
to the last letter. We have already seen how to separate letters from the
left or right of a word, using LEFT$, RIGHT$ and MID$, so you
know all the commands necessary to write the program. It will start with

Figure 3.4 Display produced by Repetition program.

46

a polite request to enter a word, which will be followed by an INPUT
command to accept and store the word in W$. At line 30 the number of
letters in the entered word is found, and stored in L. Note that line SO
contains MID$(W$,1, 1), and that I has already been assigned the variable
loop counter of a FOR ... NEXT command that is as long as the length
of the word: in other words, I is at first letter one of the word, then letter
two, etcetera. Now MID$(W$,3, 1) will find the string of letters in the
word stored in W$ which starts with the third letter and is one letter
long, which means that it will find the third letter of the stored word.
The effect of lines 40 to 60 is therefore to find repeatedly the successive
letters of the word and to print out, on the first loop, that 'letter number
I' is whatever the first letter is, and so on. The entire program for
spelling out the letters that make up a word is:

5 CLS
1p PRINT "ENTER A WORD, PLEASE."
2p INPUT W$
3p L = LEN(W$)
4p FOR I = 1 TO L
5p PRINT "LETTER NUMBER(SPC)";I;

"(SPC)IS(SPC)"; MID$(W$,1, 1)
6p NEXT I

More programs

Let us now write a program to accept any name written in the form:

JAMES JOYCE

and to produce the output:

YOUR FIRST NAME IS JAMES
YOUR SECOND NAME IS JOYCE

This may seem at first sight very easy, since after:

INPUT N$

the first name could be found by LEFT$(N$,5) and the surname by
RIGHT$(N$,5). Unfortunately this will produce nonsense if the name
entered is WILLIAM SHAKESPEARE (or any name that is not a
combination of two five letter names). The trick is, of course, to locate
the position of the space separating the two parts of the name. Then,
assuming that the name has been entered correctly, everything to the left
of the space is the first name and everything to the right is the surname.
If the name is not entered in the way we expect strange results can still be

47

printed, so it is sensible to ask that the name be entered in a standard
fashion and then to check it, rejecting it if it does not conform. This
reasoning leads us to the following program:

1pCLS
2p PRINT "ENTER YOUR NAME, PLEASE. TYPE"
3p PRINT "YOUR FIRST NAME, THEN ONE"
4p PRINT "SPACE THEN YOUR SECOND NAME."
5p INPUT N$
6p L = LEN(N$):C = p
7p FOR I = 1 TO L
8p IF MID$(N$,I, 1) = "(SPC)" THEN C = C + 1
9p NEXT 1

1pp IF C <> 1 THEN
PRINT "PLEASE ENTER YOUR NAME AS REQUESTED"

11pIF C <> 1 THEN GOT02p
12p FOR J = 1 TO L
13p IF MID$(N$,J, 1) = "(SPC)" THEN B = J
14p NEXT J
15p PRINT "YOUR FIRST NAME IS(SPC)"; LEFT$(N$,B-1)
16p PRINT "YOUR SURNAME IS(SPC)";RIGHT$(N$,L-B)
In this program the screen is first cleared, before lines 20 to 40 display on
the screen the instructions for using the program. Line 50 accepts a
name and stores it in N$. Line 60 contains two commands which are
separated by a colon. The first command stores the number of characters
in the name in L. The second sets a location C to zero, which will be used
to count the number of spaces in the name. Notice that you can enter two
separate commands on the same line if you separate them by a colon.
Lines 70 to 90 scan each character of the name, counting the number of
spaces. At the end of the repetitions the number of spaces in the name is
held in C. If there is not exactly one space in the name, then lines 100
and 110 indicate that the entry is not satisfactory and cause a return to
line 20 to permit the name to be entered again. Lines 120 to 140 locate
the position of the space, storing it in B, so that line 150 can print all the
characters to the left of the space as the first name and line 160 can print
all those to the right as the surname.

Our next program produces a rather fascinating mobile display of a
worm-like object that moves backwards and forwards across the screen!
Although there are other ways in which this effect could be achieved
this method concentrates on the commands that we have alread;
examined. It does, however, introduce one new command:
PLOT X,Y,"STRING"

48

To understand how this command works imagine the screen as a grid
made up of 38 columns numbered 1 to 38, and 27 rows numbered Oto 26
(see Figure 4.1). The total number of points on_ this grid is_ therefore
1026, each one of which is known to the One by a umque X,Y

co-ordinate (the X refers to the column number, and the Y refers to_the
row number). The top left point is therefore 0,0, and the bottom nght
point is 38,26.
PLOT 1, 1 p, "STRING"
will make the computer print the characters in the string beginning in
column 1 of the tenth row of the screen. (Avoid using column O for
displays since it is reserved for the foreground c_olour.)

Notice in our worm program that we also mtroduce an extension to
the FOR ... NEXT command. At line 50, we have FOR ... NEXT ...
STEP. If we do not include a STEP value, the computer will assume
that we wish to use STEP + 1. In other words, the FOR ... NEXT
counter will go up by one in each repetition loop. Here, however, the
STEP is -1, and the counter will consequently decrease by 1 for each
loop. The mobile display program is:
1p CLS
2p PRINT FOR I= 1 TO 3p
3P PLOT I,5, "(SPC)****(SPC)"
4p NEXT I
5P FOR I = 3P TO 1 STEP -1
6p PLOT 1,5, "(SPC)****(SPC)"
7p NEXT I
8p GOT02p
Because the last line of the program always causes line 20 to be executed
again, starting another pass across the screen and ba�k ?Y _the worm, the
program runs indefinitely when executed. To stop 1t, it 1s necessary to
press the <CTRL/C> key.

We hope you will experiment with all the programs throughout this
book, and make changes here and there to see what effect they have. O?

this last program, for example, try a new command: RND(1). This
command will make the Orie produce a random number between 1 and
the number you include in the brackets. By multiplying this random
number with an upper limit value, and then extracting the integer part,
you can create a random number up to a maxiI?um �alue that you can
specify yourself. If you need to make the range mclusive, you need only
add 1 to the upper limit value. Thus, the formula to produce a random
number is:

49

RND(1)*N+1

Change the program to the following and see what happens. Try to work
out for yourself exactly what the program is now doing.
1p CLS
15 N = RND(1)*25
2p PRINT FOR I = 1 TO 3p
3p PLOT I,5, "(SPC)****(SPC)"
4p NEXT I
5p FOR I = 3p TO 1 STEP -1
6� PLOTI,5,"(SPC)****(SPC)"
7p NEXT I
75CLS
8p GOTO 15

Run this progr�m and see what happens. Now delete line 75 and see
what happens. 1 ry to work out the difference it makes.

�e shall_ now develop a program to translate French words into their
English eqmvalents. To do this, we shall need to store French words and
the corresponding English �ords in such a way that they can be related
to on� another. BASIC provides the 'array' which is useful for doing this.
The smgle BASIC command:
DIM A$(2P)

tell� the Orie that 20 variables are to be established as an array, and that
the�r names are to be_ A$(1) to A$(2p). Once established, these array
variables can be used m the same way as ordinary variable names. For
example, we can make the assignment
A$(6) = "MAN"

The DIM command also reserves storage space for all the variables in the
array. As �he following program s??ws, arrays can be used to great
advantage m F�R ... NEXT repetit10ns. In this program we shall use
two arrays, as illustrated in Figure 3.5, with one (F$) holding French

E$

E$(1) E$(2)

MAN WOMAN

F$(1) F$(2)

F$ HOMME FEMME

Figure 3.5 Two parallel arrays for translation program.

50

E$(3) E$(4)

BOY GIRL

F$(3) F$(4)

GARCON 'JEUNE FILLEI

words and the other (E$) holding the equivalent English words in the
same order.

The program translates by seeking to match the French word to be
translated with one of the French words stored in the array F$. If a
match is found then the word is associated with the English word in the
corresponding position in the array E$. In the program line 10 reserves
space for the two arrays which will hold the French and the English
words. The words themselves are stored by lines 20 to 50. When the
lines up to 50 have been executed, the state of the memory is as shown in
Figure 3.5. Line 60 requests the entry of a French word and line 70
accepts and stores it. Line 80 then sets the variable T to zero: it will stay
zero unless a match is found for the entered French word so that it can be
translated. Lines 90 to 120 search the entire stored French vocabulary
for a match to the entered word and, if a match is found, the
corresponding English word is printed by line 100, and T is then
changed to one by line 110. After these repetitions line 130 tests T: if T is
still zero the word cannot be translated and an appropriate message is
produced. Line 140 causes line 60 to be executed next, so that another
French word can be entered, and the subsequent part of the program
repeated. This is the program for translating French words into English:

1 p DIM E$(4), F$(4)
2p E$(1) = "MAN" : F$(1) = "HOMME"
3p E$(2) = "WOMAN": F$(2) = "FEMME"
4p E$(3) = "BOY" : F$(3) = "GARCON"
5p E$(4) = "GIRL" : F$(4) = "JEUNE FILLE"
6p PRINT "ENTER FRENCH WORD."
7PINPUT W$
8p T = p
9p FOR I = 1 TO 4

1 pp IF W$ = F$(I) THEN PRINT E$(I)
11 p IF W$ = F$(I) THEN T = 1
12p NEXT I
13�IF T = pTHEN

PRINT W$;"(SPC)IS NOT IN MY VOCABULARY"
14p GOTO 6p

Clearly, as presented here, this program has a very limited vocabulary. It
can, however, be extended in a very simple manner (by adding more
lines of the type shown at lines 20 to SO and making other straightfor­

ward adjustments). Also it is not difficult to adapt the program so that it
translates from English to French. As we have already mentioned, all of
the programs presented in this section are intended to be used as vehicles

51

for experimenting with programming in BASIC. They can be amended,
extended and improved in many ways.

Saving programs

When the Orie is switched off, the program stored in its internal memory
is lost. To avoid having to type in the same program every time you want
to use it, it is necessary to copy it on to some form of permanent storage.
� program that is stored in the Orie can be permanently saved using
either a cassette or a disk unit (if you have one) so that it can be loaded
again later. We shall not discuss the concepts of saving on to disk in this
book for beginners, and shall concentrate on saving a program on to a
cassette tape.

To save the program stored in the Oric's internal memory on to a
cassette tape, first ensure that the cassette unit is correctly attached to the
Ori� and then put a tape cassette (preferably blank) into it. Completely
rewmd the tape and then wind it forward a little to avoid trying to record
on the tape leader. When the tape is positioned properly, decide on a
name for your program, say 'Lexicon' (if you are not sure what lexicon
means, look it up in a dictionary and remember the last program we
typed into the Orie), and then type:

CSAVE "LEXICON"

Press the PLAY and RECORD switches on the cassette unit until they
both lock on. Now type <RETURN> and a copy of the program will be
copied on to and stored on the tape under the name of 'LEXICON'. The
original program is still contained in the Oric's internal memory.

Note that if your cassette unit has the 'remote' connection, you can
press the PLAY and RECORD buttons before typing the command:

CSAVE "LEXICON"<RECORD>

This time, the Orie will start the cassette motor automatically when you
press the <RETURN> key, and will stop it when the program has been
saved.

We have already seen how to load a program from tape into the
computer's memory. On nearly all microcomputers, the level at which
the volume is set on the player/recorder is critical in both saving and
loading. If the level is incorrectly set (and to begin with, it probably will
be!), the screen may display:

ALE ERROR/LOAD ABORTED

Refer back to the section dealing with loading programs for details on the
best method of setting the volume level correctly.

52

If you wish the program to run automatically as soon as it is reloaded

into the computer, save it on to tape with the command:

CSAVE "FILENAME",AUTO

A subsequent:

CLOAD "FILENAME"

will cause the program to run automatically as soon as it is loaded.

Finally, we recommend that you always use the ', S ' speed setting for

both saving and loading programs - it provides just that extra bit of

security. Thus, you should get into the habit of using the two

commands:

CSAVE "FILENAME", S

and

CLOAD "FILENAME", S

Using the printer

The addition of a printer to the Orie can enhance its usefulness

considerably. Initially, the main uses for a printer are to provide

program listings and to print results in a permanent and portable form.

A program listed on paper is not only a convenient record but can also be

taken away from the Orie and studied at leisure. If a program produces a

lot of results, it is more convenient to print them out than to copy them

from the screen: it is also much more reliable.
After the initial precautions of ensuring that the printer is attached to

the Orie, switched on and loaded with paper, the program stored in the

Orie can be listed on the printer rather than the screen by giving the

simple command:

LUST

This command works in precisely the same way as the LIST command;
that is, you specify a portion of the program only by including the
relevant lines:

LUST 1 p-1 pp

If you want to send output from the program to the printer rather than
the screen, use the command LPRINT instead of the usual PRINT.

To illustrate how the printer can be used from a program in this
manner, let us modify the simple program from the beginning of this
chapter. As well as giving the same output on the screen as it did before,

53

it also produces identical output on the printer. Lines 10 to 70 comprise
the first program of this chapter. Lines 80 to 100 cause the same phrases
�s are pnnted on the screen to be typed out on the printer. The program
1s:

1 p A$= "THE(SPC)" <RETURN>
2p 8$ = "DOG(SPC)" <RETURN>
3p C$ = "SHOW(SPC)" <RETURN>
4p CLS <RETURN>
5p PRINT A$ + 8$ + C$ <RETURN>
6p PRINT C$ +A$+ 8$ <RETURN>
7p PRINT 8$ + A$ + C$ <RETURN>
8p LPRINT A$+ 8$ + C$ <RETURN>
9p LPRINT C$ + A$ + 8$ <RETURN>

1pp LPRINT 8$ +A$+ C$ <RETURN>

Summary

The Orie can store a BASIC program which can then be executed as
oft�� as required, or w�ich c�n be modified before it is run again. The
One s BASIC l�nguage _1� � simple English-like language that provides,
amo?g othe: �hmgs, fac1ht1es for storing and manipulating information,
m�kmg dec1s1ons and. �o: repea�ing an action as often as necessary. In
this chapter _these fac1ht1es are mtroduced and incorporated in simple
programs to_ 1llus�rate ways in which they can be used. When a program
ha_s �een wr�tten It can be saved on cassette or disk, and the way in which
this 1s done 1s also described.

Self-test questions

1. What is the command to start the procedure for saving the program
stored in the Orie on a cassette?

2. What are the BASIC words used for:
(a) repetition
(b) making a test and acting on the result, and
(c) giving data to a program while it is running?

3. Write short programs for the following:
(a) to print your name 10 times

54

(b) to enter a word and decide if it has more than 7 characters. If it
has more than 7 characters, indicate that a long word was entered
otherwise print that it was a short one;

'

(c)_ to accept different words entered at the keyboard and then
pnnt them out without either their first or last letter.

4. Explain in the way illustrated in Figure 3.1 the computations
performed when the following programs are executed:

(a) 1 p A$= "ALGORITHMIC"
2p L = LEN (A$)
3P FOR I = 1 TO L
4p PRINT LEFT$(A$,I)
sp NEXT I

(b) 1 p A = 1 : 8 = 1

2p PRINT A: PRINT 8
3P FOR I = 1 TO 12
4PC=A+8
sp PRINTC
6pA = 8: 8 = C
7p NEXT I

5. Write a program to accept a word, store it in A$ and then create in 6$
the reverse of the word. This can be done by starting with a string of
zero characters in 8$, and then adding one character at a time from
the right of A$. The program should print the reversed word and then
decide if the original word is a palindrome; that is, if it reads the same
forwards and backwards.

A typical dialogue from the program might be:
ENTER A WORD, PLEASE.
?MADAM
THE REVERSE OF MADAM IS MADAM.
MADAM IS PALINDROMIC.

55

Chapter 4

Graphics

Introduction

In computer terminology, graphics are pictures. Many of the programs
written for the Orie that will be of lasting interest and value will make
good use of graphics. This will particularly apply to educational
programs and computer games, where the interest and compulsion of the
programs often lies in the attractiveness of the graphics. Business
programs can also be made more effective if they present information
and results in pictorial as well as numerical form.

Obviously, some numerical computation is necessary in any reason­
ably complex program whatever its application, but the results from it
can be presented in one of three ways: by numbers, words or pictures.
While it is necessary in some applications to have accurate numerical
results, in many others the presentation of a screen full of numbers
inevitably becomes rather dull. To present information using words is
better than just numbers, but a television screen is designed to show
pictures rather than words. Anyway, as everybody knows, a picture is
worth a thousand words, and pictorial presentations are much more
natural and informative than their alternatives. In this chapter we look at
the Oric's graphics capabilities.

The Orie microcomputer has the ability to produce both graphics
and colours on the screen. Furthermore, the graphics may be of either
'low resolution' or 'high resolution'. In this context, resolution refers to
the size of the individual graphics elements that appear on the screen.
Low resolution refers to graphics where the individual elements are fairly
large and the consequent clarity and definition of pictures is relatively
poor. This is usually achieved by using predefined characters that can be
either alphabetic, or patterned blocks. High resolution graphics produce
much smaller graphics elements, and the consequent clarity and
definition of the pictures produced is that much higher. High resolution
graphics is achieved by turning very small individual dots ON or OFF on
the screen. It is the pattern produced by these individual picture
elements, or pixels, that provides the picture.

For this reason most programs that include graphics as an effect
rather than the main reason for the program tend to use mainly low
resolution commands, and we would certainly recommend that you do

57

the same at least until you become more accomplished at programming
the Orie. (The Orie training guide includes some fascinating routines to
show some of the effects of high resolution pattern production - and also
some things that just don't work!)

On the face of it, it might seem that only a limited range of pictures
could be generated within the low resolution format, but, as many
existing programs have shown, and a number of the programs in this
chapter will demonstrate, displays of surprising complexity can still be
produced. Some patience and ingenuity may be required to produce
them, but a little knowledge and some effort are really all that is needed
to start. Many people find that investigating and using the graphics
facilities of the Orie are among its most interesting aspects. The
inclusion of good graphic effects has certainly been a major reason for the

Cl) w
�
z

0
a:
0
()
0

>-

RESERVED COLUMN (FOR BACKGROUND COLOUR).

J
MAY NOT BE USED IN TEXT OR LORES.

WARNING- IN TEXT MODE THIS IS RESERVED FOR FOREGROUND
f COLOUR; MAY BE USED IN BOTH LORES MODES.

� 1 2 3 4 etc.---------------...,38

1
2

3
4

etc

26

A

._
X CO-ORDINATES

EXAMPLE:- PLOT 1,3, "A"
PLOTS AN A AS SHOWN

SCREEN MAP- TEXT, LORES p AND LORES 1 MODES.

I*

Figure 4.1 The low resolution screen grid.

58

success of many of the better programs written for microcomputers, and
will furthermore help to ensure that new programs become a source of
lasting pleasure and usefulness.

The screen and memory

A number of microcomputers use the facility of a POKE command to
push special symbols into particular positions on the screen in order to
build up pictures. This is NOT the method used by the Orie, and we
mention it only because nearly everybody has heard of 'memory­
mapped' screens and the POKE command.

In fact, the principle of graphics on the Orie is very similar. Imagine
the screen as a grid of small squares made up of 39 columns by 27 rows
for the low resolution screen (see Figure 4.1); and 240 columns by 200
rows for the. high resolution screen (see Figure 4.2). Individual squares
can be accessed by treating them as X, Y co-ordinates; that is, square 0,0
is the top left hand square in both resolutions, while square 38,26 is the
bottom right square for low resolution, and square 239,199 is the bottom
right for the high resolution screen. In all cases, the X co-ordinate
corresponds to the column number, and the Y co-ordinate corresponds
to the row number.

The total number of squares on the screen thus actually depends on
the graphics resolution you use. If you are using low resolution, it is
1053, while it is as many as 48,000 in high resolution graphics.

�12 345 239

� I

2

4

199

TEXT}LINES
SCREEN MAP FOR HIRES MODE

Figure 4.2 The high resolution screen grid.

59

Low resolution

There are three modes that can be used to produce low resolution
graphics on the Orie screen:

TEXT
LORES�
LORES 1

TEXT is the default mode when you first witch on the Orie. The
characters are those that you are now accustomed to produce from the
keyboard. In this, as in the other modes, characters can be placed in
specific positions on the screen with the command:

PLOT X,Y,"STRING"

The expression CHR$(n) can be used to tell the Orie which character
you wish it to display. In TEXT mode, 'n' is a value corresponding to the
ASCII code for that particular character. Try the following routine to
show all the characters on the screen (we start at 32 - which is a space -
because earlier character values produce commands that change the
characteristics of the screen):

5 CLS
1 � FOR I = 32 TO 128
2� PRINT "CHA$ C0DE(SPC)";I;"(SPC)=(SPC)";CHR$(I)
3� WAIT 5�
4� NEXT I

Now use the following routine to demonstrate PLOTting:

1� CLS
2� FOR I = 33 TO 4 7
3� FOR X = 15 TO 2�
4� FOR Y = 8 TO 13
5� PLOT X,Y,CHR$(I)
6� NEXT Y: NEXT X
7� WAIT 1��
8� NEXT I

Now make the following changes to this last routine in order to look at
LORES� and LORES 1 modes. First enter a new line:

5 PRINT CHR$(17)

This line 'switches off the flashing cursor so that it cannot interfere with
or spoil the screen display. It has the same effect as typing <CTRL/

60

j

Q><RETURN> at the keyboard. If you use it, you must remember
either to enter PRINT CHR$(17) or <CTRL/Q><RETURN> in
immediate mode when the program has finished in order to find where
the cursor is currently located. Now change line 10 to read:

LORES�

The only difference that you will see is a change in the background
colour of the screen. This mode is for entering ordinary characters as
graphics. Now change line 10 to read:

LORES 1

and run the program again. This time you will see a completely different
set of characters. These are the Oric's predefined low resolution graphics
charact�rs. Enter CLS <RETURN> to clear the screen at the end. The
following routine displays all the alternate graphics characters. on the
screen at once (see Figure 4.3):

1� LORES 1
2� FOR I = 32 TO 128
3� PRINT CHR$(1);"(2 SPC)";
4� NEXT I

Figure 4.3 The alternate (graphics) character set.

61

If we now go back to our last program, we can see the effect of PLOT ting
all the graphics characters into our central square by changing line 20 to
read:

2� FOR I = 33 TO 128

Also add:

9�CLS

to return the screen to the normal TEXT mode automatically at the end.
The full program should now look like this:

5 PRINT CHR$(17)
1� LORES 1
2� FOR I = 33 TO 128
3� FOR X = 15 TO 2�
4� FOR Y = 8 TO 13
5� PLOT X,Y,CHR$(I)
6� NEXT Y: NEXT X
7p WAIT 1�p
8p NEXT I
9pCLS

Figure 4.4 shows a montage of some of the graphics squares produced by
this program.

Finally, in this introduction to graphics, we can look at the colours
available to the Orie. There are two commands to consider:

INKn
PAPER n

where 'n' is a value between zero and seven that corresponds to one of the
colours in the table below:

O BLACK
1 RED
2 GREEN
3 YELLOW

4 BLUE
5 MAGENTA
6 CYAN
7 WHITE

INK refers to the colour used to display the characters on the screen:
PAPER refers to the background colour of the screen itself. The default
setting when you first switch on the Orie is:

PAPER?
INK�

It is probably a good idea to include these settings as commands at the

62

end of all your programs that change the colours on the screen,
particularly where the changes are made in a random manner. In this
way the screen will automatically revert to the standard settings at the
end of the routine. The following short program shows all the colours
available for the INK and PAPER commands. Note that when the two
colours are identical, no characters can be perceived even though they
are there:

5CLS
1� FOR I=� TO 7

Figure 4.4 A montage of some of graphics 'squares.

63

2� FOR P = � TO 7
3� PAPER P: INK I
4� PLOT 1, 12, "CHARACTER COLOURS ARE SHOWN"
5� PLOT 1, 13, "IN FOREGROUND BY THE INK COMMAND"
6� WAIT 5�
7� NEXT P: NEXT I
8� PAPER 7: INK�

We now know enough to start producing patterns in low resolution
graphics.

Screen patterns

As we have already seen, the screen can be filled with a particular symbol
by a program such as:

5 PRINT CHR$(17)
1� LORES �
2� FOR X = 1 TO 38
3� FOR Y = � TO 26
4� PLOT X,Y,"*"
5� NEXTY,X
6�GOT06�

However, when the character at each screen position is generated by a
systematic method, patterns that can be both informative and aestheti­
cally pleasing can be produced. A general scheme that can be used to give
a wide variety of interesting patterns involves the three stages of
computation, classification, and representation. A value is first com­
puted for each position on the screen using its row and column number.
That value is then classified by assigning it to one of a number of
predefined classes. Each class is represented by a particular character. In
this way a character can be obtained for, and plotted in, each screen
position. The process is, essentially, that used to make a coloured
contour map where the height of each point is measured (computed),
classified into the appropriate height interval, and then represented on
the map by the colour assigned to that height interval. A general program
scheme for generating screen patterns of this nature is given in Figure
4.5, and this can be refined to give a program such as the following:

1�CLS
15 PRINT CHR$(17)
2� FOR R = 1 TO 26
3� FOR C = � TO 38
4� H = R*R + C*C

64

5P IF H < 1 �� THEN I = 35
6� IF H > 1 �� THEN I = 43
7� IF H > 3�� THEN I = 36
8� IF H > 9�� THEN I = 58
9� PLOT C,R,CHR$(I)

1�� NEXT C:NEXT R
11� GOTO 11�
If you follow the program closely, you will see that it keeps ver

_
y cl?se to

the program scheme in Figure 4.5. Line 20 is for each row, while lme 30

is for each column. Line 40 computes a value, while lines SO to 80

classify the values. Lines 90 then plots the relevant class code on the

individual points of the screen.

BEGIN

---�FOR EACH ROW

AND FOR EACH COLUMN IN THE ROW

NO

COMPUTE A VALUE USING THE
ROWNUMBER ANDTHECOLUMNNUMBER

CLASSIFY THE VALUE, ASSIGNING IT
A CLASS NUMBER, I

PLOT CHARACTER I IN CURRENT POSITION

NO

STOP

Figure 4.5 Program scheme for screen patterns.

65

Change line 10 to:

1p LORES 1

and run it again. Figures 4.6 and 4. 7 show the screen results of the two
versions. Remember to type <CTRL/Q> to switch the cursor back on
when you have finished with the program. Line 110 simply prevents the
program from terminating and spoiling the-display with the Ready sign.
Type <CTRL/C> when you have finished looking at the program.

A second program following the same pr gram scheme is:

1pCLS
2p PRINT CHR$(17)
3p FOR I = 1 TO 1 p
4p READ A(I)
5p NEXT I
6p DATA 35,36,37,38,42,43,61,63,92,94
7p FOR R = 1 TO 26
8p FOR C = � TO 38
9� H = (R*C) i (1/3)

1�� H = INT(H)+1
11 � PLOT C,R,CHR$(A(H))
12p NEXTC:NEXT R
13P GOTO 13�

Here there are ten intervals and plotting symbols. Line 90 computes the
value (R * C raised to the power of 1/3; that is, the cube root of R * C),
while line 100 classifies the value by finding its whole part (the INT
command). To change the appearance of the pattern, try changing the
values of the symbols being used. You could, for example, literally
change all the values of the items in the DATA list, or you could simply
change line 10 to:

1� LORES 1

Figures 4.8 and 4.9 show the program with line 10 as CLS and LORES 1
respectively.

A wide range of patterns can be produced by using this method. In
general, a distinct pattern results from each choice of computation,
classification and set of plotting symbols chosen to represent the classes.
Classification can be achieved in many ways other than by dividing a
range of values into intervals; for example the number in the first place
after the decimal point in the computed value can be used to give the
class number. The selection of plotting characters is vital to the
presentation of effective patterns. The characters chosen for the last two

66

Figure 4.6 Screen pattern 1 (CLS).

Figure 4. 7 Screen pattern 1 (LORES!).

67

Figure 4.8 Screen pattern 2 (CLS).

Figure 4.9 Screen pattern 2 (LORES!).

68

programs are intended to accentuate the transition from one class to
another, but other characters may well prove more effective or attractive.

High resolution

By choosing and grouping graphics characters with care, not only
patterns but also pictures can be drawn on the screen. However, in many
ways, it is better to use high resolution graphics to produce pictures
because the clarity is that much greater. With just two commands, you
will be able to draw very complicated and detailed graphics pictures and
patterns in the Oric's high resolution mode, HIRES. The two commands
are:

CURSET X,Y,n
DRAWX,Y,n

In both cases, the 'n' is a value in the range of Oto 3 corresponding to the
table below:

0 background colour
1 foreground colour
2 invert colours
3 do nothing
Before we examine the two commands we must look at the concept of

high resolution graphics. This is achieved by 'turning on' individual and
very small points on the screen. These points are called 'pixels' because
they are the smallest possible picture elements. In the Oric's high
resolution mode, which is entered via the command HIRES (and exited
via the command TEXT), there are 200 rows (or rasters) of 240 pixels
each (see Figure 4.2). CURSET X,Y,n is the command that turns on
individual pixels, where X is the column co-ordinate, and Y is the row
co-ordinate. Pictures may thus be drawn by 'turning on' a particular
pattern of pixels.

CURSET also places an invisible cursor at the X,Y co-ordinates. The
second command will automatically draw a line from the CURSET
position to that specified by the DRAW command. However, you must
take note that the DRAW position is not an absolute X,Y position, but
one that is relative to the original CURSET position. Run the following
program to demonstrate HIRES, CURSET, and DRAW. When you have
worked out what each line does, you will be well on the way to mastering
high resolution graphics.

1� HIRES
2� FOR I = � TO 239 STEP 3
3� CURSET �.�, 1
4� DRAW I, 199, 1

69

5� NEXT I
6� FOR I = p TO 239 STEP 3

7� CURSET I, 1 99, 1

8p D RAW 239-1,- 1 99, 1

9p NEXT I
1 �� GOTO 1pp
A second program that uses the same commands but in a random manner
is as follows:

1 p HIRES
2p S = 1

3P X = 1 2p: Y = 1 pp
4p CURSET X,Y,3
45 FOR N = 1 TO 75
5P I= INT(RND(1)*2PP)*S
6P J = INT(RND(1)*2PP)*S
7p IF X + I < 2� OR X + I > 22P THEN 5P
0p IF v + J < 2p OR Y + J > 10p THEN 6P
9p DRAW I,J, 1

1 �� X = X + I : Y = Y + J
11 pS= -S
1 2� NEXT N
13� GOTO 13�
In this program, an initial cursor position is set by lines 30 and 40. In line
45 a loop counter is begun to prevent the screen from overfilling with too
many lines. Then, in lines SO and 60, random values for the DRAW
command are generated. Lines 70 and 80 check to make sure that no
DRAW commands will take the cursor outside of the screen area, and,
incidentally, also explain the otherwise puzzling pauses when the
program is run. Figure 4.10 shows a pattern produced by this program.

Producing a drawing

To demonstrate the production of a picture, try a short program that
draws the infamous space invader. We will use a basic programming
technique that you should try to understand and use as soon as possible.
This is the use of the READ and DATA commands. The information
required to produce the space invader is stored as data in lines 30 50.
That data is then read into the program proper by the READ commands
in lines 20 and 40. The DIM command at line 10 ensures that the
program sets aside sufficient internal storage for the two DAT A lines,
and enables the program to treat them as arrays. The structure of the

70

program is therefore to store all the column co-ordinates in line 30 andall t�e row co-ordinates in line SO. These are then translated to the s�reenby hne 7�. Refer to any BASIC programming manual for a more detailedexplanation of READ and DA TA.
5 HIRES

1 � DIM X (4�),Y(4�)
2� FOR I= 1 TO 31 : READ X(l) : NEXT I

4
3�

F
D
O

A
R
TA 3,4,5,2 ,3,4,5,6, 1, 2 ,4,6,7,1,2,3,4,5,6,7,2,3,5,6,3,4,5 26 1 7.,., I = 1 TO 31 : READ Y(l) : NEXT I

' ' ' '
5� DATA 1, 1, 1,2,2 , 2 ,2,2 ,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6,6,6,7,7,8,8
6� X = 1�: Y = 1�
7�FORL:;;1 T031 :CURSET X+X(l),Y+Y(l), 1 :NEX TI
A 'space invader' is an artificial image in the sense that it takes its form�rom the av�ilable graphics characters rather than an inherent shape ofits own that i� model�ed, or approximated, using the graphics characters.
!n the fo_llowmg section a procedure for sketching a shape on the screenis described. For demonstration purposes we shall revert to lowresol�tion graphics. Th� principle, however, is the same whether youuse high or low resolution. It demonstrates that recognisable sketches

Figure 4.io Display produced by Lines program.

71

can be produced, while at the same time showing that the limited
definition of low resolution display can cause problems regarding the
accuracy of the sketch.

Suppose we want to draw the butterfly shown in Figure 4.1 l(a) on
the screen. To do this, draw a square grid over it as shown in Figure
4. ll(b), and then, for each square of the grid in turn find the graphics
character most closely approximating to it. The result of this will be
something like that shown in Figure 4. ll(c) while the outline of the
butterfly as it will appear on the screen is shown in Figure 4.ll(d).
Finally, find the codes for the graphics characters and write a program to
print them in the right place on the screen. The best method is once
again to use the READ and DATA features of BASIC. The names are
fairly self-explanatory; a READ command reads data from a DATA list.
The first READ command executed in a program will read the first data
item from the DATA list, the second takes the second item, and so on. By
putting the READ command into a FOR ... NEXT loop, you can read
through the entire DAT A lists quite simply.

In the following program to draw the butterfly in an 8 x 14 block,
notice that we create an 8 x 14 matrix at line 10. The data is contained in
lines 100 to 180. Lines 30 to 80 READ the DATA and PLOT the picture.
Line 90 simply prevents the program from terminating. This prevents

Figure 4.11 (a) Butterfly. (b) Butterfly with grid. (c) Butterfly composed of graphics characters.
(d) Outline of image plotted on screen.

72

the appearance of the Ready message that would otherwise spoil the
display on the screen.

5 PRINT CHR$(17): INK 2: PAPER 4
1p DIM A(8, 14)
2PCLS
3p FOR R = 1 TO 8
4pFORC=1 T014
5p READ A(R,C)
6p PLOT C,R,CHR$(A(R,C))
7p NEXTC
8p NEXT R
9pGOT09p

1 pp DATA 32,32,32,32,32,32,32,32,32,32,32,32,32,32
11 p DAT A 32,32, 128, 128,32,32, 128,32,32,32, 128, 128,32,32
12p DATA 128,128,128,128,128,128,128,128,128,128,128, 128,32,32
13p DATA 128,128,128,128,128,128,128,128,128,128,128,128,128,

32
14p DATA 32,128,128,128,128,128,128,128,128,128,128,128, 128,32
15p DATA 128,128,128,128, 128,32, 128,32, 128,128,128, 128,32,32
16P DATA 32, 128,128,128, 128,32,32,32, 128,128,128, 128, 128,32
17p DATA 32,32, 128, 128,32,32,32,32,32, 128, 128,32,32,32

A display produced by such a program is shown in Figure 4.12. The
problems of resolution can be tackled in a number of ways. The simplest
is to stand further away from the screen, letting your eye and brain
integrate and resolve the image as its finer detail becomes less clear. A
more active measure would be to switch to high resolution graphics that
would enable the use of a much larger number of grid squares. The
positioning of the grid is also important, since the details that are vital for
recognition should be captured as accurately as possible. Finally, a little
artistic licence in the design of the displayed image may also help
considerably.

Movement

Once static displays can be produced, it seems natural to progress to the
generation of moving displays. The programs presented in this section
make it possible for the user to control the movement of a shape on the
screen. Besides being fascinating in itself such programs illustrate the
techniques used in many games programs.

It is worth mentioning that the Orie has the facility to use joysticks to
control movement on the screen, but since this is a more advanced form
of programming we will not discuss it in this book.

73

Using the instructions for PLOTting a space invader we can write a
program to move the invader backwards and forwards across the screen.
The program should scan the keyboard to see if any 'movement' keys
have been pressed, and if so, it should move the invader appropriately. A
refinement is needed to prevent the moving shape from leaving a trail
behind itself. Movement is simulated by redrawing the entire shape by
one position to the left or right. If it moves to the right, however, it will
leave its leftmost characters where they were on the screen. One method
of avoiding this is for the shape to have a surround of spaces so that the
part left behind is always blank. In the following program, which you
will see is an expansion of our earlier space invader drawing program,
movement is effected by the <LEFT ARROW> and <RIGHT
ARROW> keys.

5 HIRES
1 p DIM X(6P),Y(6P)
2p FOR I= 1 TO 31 : READ X(I): NEXT I
3p DATA 3,4,5,2,3,4,5,6, 1,2,4,6,7, 1,2,3,4,5,6,7,2,3,5,6,3,4,5,2,6, 1,7
4p FOR I= 1 TO 31 : READ Y(l): NEXT I
5p DATA 1, 1, 1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6,6,6, 7, 7,8,8
6p FOR I= 32 TO 54 : READ X(I) : NEXT I

Figure 4.12 Butterfly as displayed on the screen.

74

7p DATA 2,6, 1,7,p,3,5,8,p,8, 1,4,7,2,6, 1,3,5,7,p,2,6,8
8p FOR I = 32 TO 54 : READ Y(I) : NEXT I
9p DATA 1, 1,2,2,3,3,3,3,4,4,5,5,5,6,6,7,7,7,7,8,8,8,8

1 pp X = 1 p : Y = 1 p
11 p FOR I= 1 TO 31 : CURSET X+X(I),Y+ Y(l), 1 : NEXT I
12p GET A$
13p P = -1 : IF ASC(A$) = 9 THEN P = 1
14p X = X + P
15p IF X < 1 OR X > 36 THEN GOTO 12p
16p FOR I= 32 TO 54: CURSET X+X(l),Y+Y(l),p: NEXT I
17p GOTO 11p

Notice iine 120 and the GET$ command. This command scans the
keyboard and looks for a key that is depressed. The next three lines
check that only the required movement keys will have any effect,
jumping back to line 120 if spurious keys are pressed.

Animation

Displaying still pictures at a sufficiently high rate produces the illusion
of continuous movement. All moving-picture systems including films
and television rely on this effect, which depends on several human

Figure 4.13 Frames 1, 2 and 3 for flying butterfly.

75

characteristics including the persistence of vision. The program pre­
sented in this section attempts to produce a mobile display by plotting
successive static images in precisely the same way as a moving picture is
produced by showing successive static images quickly enough.

The following . program produces a mobile display of a flying
butterfly: the successive frames catch different positions of the
butterfly's wing when in flight. The sequence from which the frames are
derived is shown in Figure 4. 13. The first frame, with the wings fully
extended, is the image produced earlier. The other frames are obtained
in the same way as the first. In the program, the codes for the three
frames are read in first, and then the frames are plotted repeatedly in the
sequence 1,2,3,2. The flow chart of the program is given in Figure 4.14.

The program is:

5 PRINT CHR$(17): INK 2: PAPER 4
1� DIM A(9,14) ,B(9,14),C (9,14)
2p CLS
3p FOR R = 1 TO 9
4p FOR C = 1 TO 14
sp READ A(R,C)
6p NEXT C
7pNEXTR

1 pp DATA 32,32,32,32,32,32,32,32,32,32,32,32,32,32,

BEGIN

STORE FRAME 1

STORE FRAME 2

STORE FRAME 3

PLOT FRAME 1

PLOT FRAME 2

PLOT FRAME 3

PLOT FRAME 2

Figure 4.14 Flow chart for flying butterfly program.

76

11 � DATA 32,32, 128, 128,32,32, 128,32,32,32, 128, 128,32,32
12p DATA 128,128,128,128,128,128,128,128,128,128,128,

128,32,32
13p DATA 128,128,128,128,128,128,128,128,128,128,

128, 128, 128,32
14P DATA 32,128,128,128,128,128,128,128,128,128,128,

128,128,32
1 Sp DATA 128,128,128,128, 128,32, 128,32, 128,128,128,

128,32,32
16p DATA 32,128,128,128, 128,32,32,32, 128,128,128,128,

128,32
17p DATA 32,32, 128, 128,32,32,32,32,32, 128, 128,32,32,32
18p DATA 32,32,32,32,32,32,32,32,32,32,32,32,32,32
2pp FOR R = 1 TO 9
21 p FOR C = 1 TO 14
22p READ B(R,C)
23p NEXTC
24p NEXT R
3pp DATA 32,32,32,32,32,32, 128,32,32,32,32,32,32,32
31 p DATA 32,32,32, 128,32,32, 128,32,32, 128, 128,32,32,32
32p DATA 32,128,128,128, 128,128,128,128,128,128, 128,32,

32,32
33p DATA 32,128,128,128,128,128,128,128,128,128, 128,32,

32,32
34P DATA 32,128,128,128,128,128,128,128,128,128,128,

128,32,32
35p DATA 32,32,32, 128,128,128,128,128,128,128,128,128,

32,32,32
36p DATA 32,128,128,128,128,128,128,128,128,128,128,

128,32,32
37p DAT A 32,32, 128, 128, 128,32, 128,32, 128,128, 128,32,

32,32
38p DATA 32,32,32, 128, 128,32,32,32,32, 128,32,32,32,32
4�p FOR R = 1 TO 8
41 p FOR C = 1 TO 14
42P READ C(R,C)
43p NEXTC
44p NEXT R
spp DATA 32,32,32, 128,32,32, 128,32,32, 128,32,32,32,32
51 p DATA 32,32, 128,128, 128,32, 128,32, 128,128, 128,32,32,32
52p DATA 32,32, 128,128,128,128,128, 128,128,128, 128,32,32,32
53p DATA 32,32, 128,128,128,128,128,128,128,128, 128,32,32,32

77

54� DATA 32,32, 128,128,128,128,128,128,128,128, 128,32,32,32
55� DATA 32,32,32, 128,128,128,128,128,128, 128,32,32,32,32
56� DATA 32,32, 128,128,128,128,128,128,128,128, 128,32,32,32
57� DATA 32,32, 128, 128, 128,32, 128,32, 128,128, 128,32,32,32
58� DATA 32,32,32, 128,32,32,32,32,32, 128,32,32,32,32
6�� FOR R = 1 TO 9 : FOR C = 1 TO 14
61 � PLOT C,R,CHR$(A(R,C))
62� NEXT C,R
63� FOR R = 1 TO 9 : FOR C = 1 TO 14
64� PLOT C,R,CHR$(B(R,C))
65� NEXT C,R
66� FOR R = 1 TO 9 : FOR C = 1 TO 14
67� PLOT C,R,CHR$(C(R,C))
68� NEXT C,R
69� FOR R = 1 TO 9 : FOR C = 1 TO 14
7�� PLOT C,R,CHR$(B(R,C))
71� NEXT C,R
72� GOT06pp

This program shows how the simulation of animation can be achieved. In
this particular instance it does not work quickly enough to be very
effective. Obviously, the larger and more complicated the image, the
longer it takes the computer to display the different frames, and the less
effective the animation. One method that can be used to increase the
frame sequence in animation is to plot only the changes necessary to
convert one frame to the next rather than to plot entire frames all the
time. You might also like to produce an animation of a much smaller
display to see how much faster and more effective it becomes. Clearly,
animation in high resolution graphics is much more effective.

Dynamic simulation

This section provides a dynamic simulation of a system that experiences
random growth and decay. It displays a community that grows initially
from a single cell. When it reaches a certain size it decays to a lower level
and then fluctuates between those two levels. The display can be taken as
a simulation of the growth of a town or of a community of insects,
although budding town planners wiil already know that real towns do
not grow randomly! The random element of the program is provided by
a command RND that generates a pseudo random number.

78

5 DIM A(12,16): INK 2: PAPER 4
1 � CLS : G = 1 : C = 1

2� T = 1 : A(5,6) = 1 : GOSUB 1ppp
3p FOR I = 1 TO 12
4p FOR J = 1 TO 16
5p IF RND(1) > p.9 THEN A(I,J) = T
6� NEXT J: NEXT I
?pc= P
8� FOR I = 1 TO 12
9� FOR J = 1 TO 16

1 pp IF A(I,J) = 1 THEN C = C + 1
11p NEXT J: NEXT I
12� G = G + 1 : GOSUB 1 �pp
13p IF C > 99 THEN T = p
14p IF C < 3� THEN T = 1
15p GOT03p

1 PPP FOR I = 1 TO 12
1 �1 � FOR J = 1 TO 16
1p2� IF A(I,J) = 1 THEN PLOT J+5,l+5,"*"
1 p3p IF A(I,J) =� THEN PLOT J+5,1+5, "(SPC)"
1 p4p NEXT J : NEXT I
1p5p PLOT 5,2p,"CONGRATULATIONS" + STR$(G) +

"(2SPC)POPULATION" + STR$(C) + "(2SPC)"
1p6p RETURN

Special commands

Finally, there is a number of commands in the Oric's graphics
particularly worthy of attention. These include FILL, CIRCLE, and
PATTERN. FILL is demonstrated in the first of the following three
programs, CIRCLE in the second, and PATTERN (which can be used to
alter the make-up of lines - particularly in the DRAW command - and
includes useful pattern values of 15, 170 and 30) is demonstrated in the
third. This last one can be called Random Fungus. See Figures 4.15,
4.16and4.17.

5 HIRES
1 p I = INT(RND(1)*2PP)
2p CURSET p,I,�
3p X = RND(1)*8+ 16
4p FILL 1, 1,X
spw = INT(RND(1)*1�)
6p Q = INT(RND(1)*4)+3
7� N = INT(RND(1)*12)+1
8p MUSIC 1,Q,N,5

79

9�WAITW
1�� GOTO 1�

1� HIRES
2� I= INT(RND(1)*17�)+3�
3�J = INT(RND(1)*12�)+4�
4� CURSET I,J,3
5� K = INT(RND(1)*1 �)+5
6p CIRCLE K, 1
7pGOT02�

1p PAPER p
2p HIRES
3p PATTERN 17p
4p FOR N = 1 TO 25
5pI = INT(RND(1)*17�)+3�
6p J = INT(RND(1)*12P)+4p
7p CURS ET I,J,3
8� FORK= 1 TO INT(RND(1)*1 p)+5
9� CIRCLE K, 1

1P� NEXT K

Figure 4.15 Display produced with the FILL command.

80

Figure 4.16 Display produced with the CIRCLE command.

Figure 4.17 Fungus display produced with the PATTERN command.

81

Chapter 5

Special features of the Orie

Specification of the Orie

In this chapter, information about the Orie and some of its special
features either not mentioned or mentioned only briefly in earlier
chapters, is now gathered together to provide a basic reference chapter.
It is not intended to be an exhaustive collection of data about the Orie,
but it does include features that are of interest to the new user of the
computer.

Manufacturer:
Microprocessor:
Screen display:
Keyboard:

Memory size:
Language:
Graphics
repertoire:

Peripherals:

Orie Products International
MCS 6502
40 (38 usable) characters by 27 lines.
56 keys and one space-bar. The letters are laid out in
typewriter style: QWERTY
48K

Orie Extended BASIC
low resolution - a number of graphics characters
accessed in LORES l; with a grid size of 39 x 27
squares
high resolution- one grid sizes: 240 x 200 pixels
The Orie will connect to a normal colour television
(or black and white), or to a visual display monitor.
It will also connect to a standard domestic cassette
recorder.

At the time of writing, Orie Products
International does not produce its own joysticks,
although the computer has a port to which joysticks
may be connected.

Orie Products International does not produce its
own printers. The computer, however, does have a
Centronics compatible parallel printer port, and will
therefore accept a wide range of printers.

At the time of writing, we know of no disk drives
available for the Orie. These will probably be
available in the future.

83

Software: Machine language code can be put into memory by a
BASIC program using the POKE command.
Routines thus entered can then be accessed by using
the DEF USR command.

If you buy disk drives to go with the Orie, the
internal ROM contained BASIC interpreter is auto­
matically masked out. This leaves a massive 64K of
user addressable RAM, and makes the use of
disk-based high level languages like Forth, Prolog,
Pascal, Lisp and Logo possible.

Inside the Orie microcomputer

You must provide your own screen for the display, which could be a
domestic television set (black and white or colour), or a separate industry
monitor. The keyboard is similar to a typewriter differing only a few
extra keys. Since these external features are familiar, most of this section
is devoted to the inside of the computer.

Inside the Orie are the electronics for producing the specialised
screen displays, the sound producing circuits, the memory, and of course
all the logic for running a sophisticated computer. All of this is mounted
on one medium sized printed circuit board.

A printed circuit board is the most convenient way to mount and
interconnect the large number of components of the computer. It has
copper tracks laid down on it to connect the mounts into which the
various chips are inserted. The layout of the printed circuit board reveals
the essential structure of the microcomputer.

Unlike some other microcomputers, the Orie does not have its power
supply unit within the main casing. The Oric's power unit is a separate
box that connects the computer to the domestic mains supply. It
converts the 240 volts alternating supply from the mains to those
required by the computer components.

The memory available to the user, particularly for storing BASIC
programs, is provided by 'random access' chips, or RAMs. The
information stored in this type of memory can be accessed, and can be
replaced by the program as required. When the computer is switched
off, all the information stored in RAM is lost.

There are, of course, certain features of the Orie that are always
required and which must not be replaced or lost when the computer is
turned off. To give just two examples: BASIC must always be available,
and the characters to be displayed on the screen should be able to be
generated at any time. Such functions are provided by chips with

84

[

information permanently stored in them. These chips are known as 'read
only memories', or RO Ms.

The sockets for connecting the Orie computer to other devices are at
the edge of the printed circuit board and at the two sides and the back of
the case.

Sound on the Orie computer

The Orie computer enjoys a growing reputation for the quality and range
of its sound capabilities. Sound is, furthermore, very simple to produce.

The Orie computer includes an internal loudspeaker. Unlike some of
its competitors, this loudspeaker can produce adequate volume levels.
The following program is an example of its capabilities:

1 p DIM 0(45),N(45),W(45)
2p FOR I= 1 TO 45: 0(1) = 3: NEXT I
3p 0(4) = 2: 0(15) = 2
4p FOR I= 1 TO 45: READ N(l): NEXT I
5p DATA 1, 1 ,3, 12, 1,3,5,5,6,5,3, 1,3, 1, 12, 1
6p DATA 1,3,5,6,8,8,8,8,6,5,6,6,6,6,5,3
7p DATA 5,6,5,3, 1,5,6,8, 1 p,6,5,3, 1
8p FOR I = 1 TO 45 : READ W(l) : NEXT I
9p DATA 2,2,2,3, 1,2,2,2,2,3, 1,2

1 p� DAT A 2,2,2,2, 1, 1, 1, 1,2,2,2,3, 1,2
11 p DAT A 2,2,2,3, 1,2,2, 1, 1, 1, 1,3, 1,2, 1, 1,2,2,3
12p FOR I = 1 TO 45
13p MUSIC 1,0(I),N(I),5
14p WAIT 3p * W(l)
15P MUSIC 1,1,1,p
16p NEXT I

The use of the sound commands can be used with great effect in games
with graphics - Arcade Space Invaders will probably be familiar to
everyone. To demonstrate the concept of mixing sound and graphics, try
the following program, which you may recognise as an adaptation of an
earlier program:

5 PAPER
1p HIRES
17 FOR N = 1 TO 5p
2pI = INT(RND(1)*17p)+3p
3�J = INT(RND(1)*12p)+4p
4p CURSET I,J,3
45 EXPLODE

85

spFORK= 1 TO INT(RND(1)*1P)+5
6p CIRCLE K, 1
7pNEXTK
75 WAIT 1pp
8p NEXT N

There are also three other ready-made arcade sounds that you may use.
Try them in immediate mode by typing:

PING <RETURN>
SHOOT <RETURN>
ZAP <RETURN>

Using the Orie as a timer

If you read other books on programming in BASIC, you may come
across a command called TI or TI$. This command instructs the
processor to display the current value of an internal counter that
automatically starts whenever you turn on the computer. The timing of
this counter is extremely accurate, and it is consequently often referred
to as a clock. Computers that include this clock/counter can be readily
used as an elaborate and very accurate form of timer. Unfortunately, at
the time of writing, there is no such clock/counter in the Orie. Test this
by typing in the command:

PRINT TI <RETURN>

The response, you will see, is to display:

p
Ready

The command, which is a valid BASIC instruction, has been accepted by
the BASIC interpreter, but there is no value for the processor to return.

This section, however, will show that with a little imagination, the
Orie can still be made to simulate a timer with a fair degree of accuracy.
The routine itself could be incorporated quite effectively into a recipe
program. Let us say that the recipe has given both the ingredients and
the instructions, and that the mixture has to be cooked for a certain
length of time. It could call the following as a subroutine (using GOSUB
and RETURN) and act as a timer for the recipe. Enter the following
program and try to work out what is happening. There are no new
commands, but notice that we use a 'question-mark' instead of the
PRINT command. '?' is much quicker to enter and takes up less space on
the line: it is simply a form of BASIC shorthand for 'PRINT'.

86

1pCLS
2p? "(5SPC)HOW LONG DO YOU WANT"
3p ? "(5SPC)TO SET THE TIMER FOR?"
4p?
5p? "ENTER THE NUMBER OF MINUTES";
6�INPUTA
7p CLS:? "COUNTING UP TO(SPC)";A;"(SPC)MINUTE/S"
8p FOR 1=1 TO A: FOR J=1 TO 25885: NEXT J
9� CLS:? "COUNTING UP TO(SPC)";A;"(SPC)MINUTE/S"

1pp?
11 p? I;"(SPC)MINUTE/S OF(SPC)";A;"(SPC)COUNTED"
12� PING
13P NEXT I
14p FOR I = 1 TO 4
15� PING: WAIT 1�: NEXT I
16p CLS
17p? "TIMES UP!!!"
1ap?
19p? "DO YOU WANT TO RESET TIMER? Y/N";
2pp INPUT 8$
21 p IF 8$ = "Y" THEN GOTO 1 p ELSE END

This program illustrates a number of the more simple features of BASIC
that you have already come across: PRINT, FOR ... NEXT, GOTO anc
PING. But it also demonstrates an interesting use of the FOR ... N EXl
loop that is particularly useful when programming the Orie: that is, as,
'delay loop'. Notice the format of the loop:

FOR I= 1 TO n:NEXT I

There is no separate command between the FOR and the NEXT part 01
the instruction. In other words, this construction instructs the compute1
to do nothing but go round in circles for a specified number of times. B)
varying the number of loops you can specify the length of time tht
computer takes to complete the command, and hence the duration of tht
delay 'introduced into the program.

Notice that our delay loop (which is the 'timer') at line 80 is for 1 tc
25885 in steps of + 1. Experimentation has shown that it takes the Orie
almost exactly one minute to complete this number of loops. If you fine
that it is in fact only 59.9 seconds, try adding a few more loops:
conversely, reduce the number to, say, 25800 if you find the Orie i�
taking too long.

Line 80 also shows a feature known as 'nested loops'. The first loop 1s

87

FOR I= 1 TO A. Now, A, as you will see at line 60, is a variable input by
the user to specify the duration of the timer in minutes. The FOR J loop
is thus repeated as many times as the FOR I loop specifies.

Lines 90-120 provide a simple counter and buzzer to show the
passage of time. Try changing line 110 to read:

11 �? A-I;"MINUTES TO GO"

Lines 140 and 150 provide the alarm that is activated as soon as the
nested FOR ... NEXT timer is complete, while the rest of the program
provides the opportunity to reset the timer or exit from the pr?gram.

The Orie has another command that can be used for mtroducmg
delays:

WAIT (n)

Here the value 'n' is equal to n times 10 milliseconds. Thus:

WAIT 1��

introduces.a pause of 1 second, while:

WAIT6���

produces a pause of 1 minute. As a self-test project, you may like to write
your own timer using the WAIT command rather than the delay loop.

Conclusions

This book has aimed to provide an easy introduction to using the Orie
microcomputer, and it has described many of the applications in which
the Orie can be used to good effect simply by loading and running a
program. There are a large number of applications of this kind,
including some business applications, which require no knowledge of
how the Orie microcomputer works and need only a minimal knowledge
of the instructions required to operate it. In these circumstances the
program is all important. The Orie microcomputer is mere�y a. vehicle
for running the program. A special purpose system of this kmd can
demonstrate its worth by paying for itself in quite a short time. However,
the Orie microcomputer is extremely versatile, being capable of as many
activities as it can be programmed for. This versatility can be harnessed
by running different programs for each of a range of applications.

Purchased programs do not always do exactly what you may want, so
it is useful to be able to program the Orie microcomputer in order to
modify such programs. Whether for this reason, or as a result of curiosity
on how to tap the full potential of the Orie microcomputer, it is useful to
be able to write programs. An introduction to programming the Orie

88

microcomputer is provided by this book, but it is only an introduction
and Appendix 1 indicates several sources of information which can be
used for further study.

The importance of the Orie microcomputer used as an educational
tool has been stressed more than once in these pages. Its importance as
an example of modern technology should not be overlooked. It has a
merit merely existing as an available product of the technology that will
be used increasingly in the future, by providing an appreciation of how
the technology is applied in everyday situations.

When viewed from different perspectives, the Orie microcomputer is
seen as a tool which can be used in a number of ways. This book has
attempted to introduce many of these uses and to indicate the sources of
information which will help in developing these avenues further.

89

. .'

Appendix 1

Further reading

This appendix lists some books and magazines that are suitable for
further reading to follow up particular topics that are mentioned,
introduced or developed within the book.

New books are appearing daily, but the quality and usefulness varies
enormously. Basically they fall into three categories: the general purpose
book (dealing with microcomputing in general); the hardware specific
book (dealing in detail with one particular computer); and the book of
programs that is simply a list of programs with a varying degree of
excellence, usefulness and even accuracy. This book aims to be a
compromise between all three types, selecting and compiling only the
best and most useful elements of each.

Like book titles, new computer magazines appear almost daily: but
unlike book titles, others seem to disappear equally fast. It may be that
some of the magazines listed below may have been disbanded by the time
this book is on the market: equally, other new magazines not here
mentioned will by then have been published. There are four major
publishers of microcomputer magazines (ECC, EMAP, IPC and VNU),
although there is a number of independent publishers with just one or
two magazine titles.

Books on the Orie

Learning to Use ... is, as far as we know, the very first book to be
published specifically on the Orie microcomputer. It won't be the last!

General Books

Illustrating BASIC, by Donald Alcock (Cambridge University Press,
1978).
Somewhat dated now, but still the best general introduction to BASIC
programming available. Like Dennis Jarrett's book (see below), an easy
style can (wrongly, we think) be interpreted as a patronising approach
from the author.

Illustrating Computers, by Colin Day and Donald Alcock (Pan, 1982).
Companion book to Illustrating BASIC; and equally recommended for
the newcomer to computers.

91

Software Secrets, by Graham Beech (Sigma Technical Press, 1981).
This book is actually written for a Sharp MZ-80K microcomputer, but
since it is really a book about programming ideas and techniques, it
makes useful and interesting reading.

The Good Computing Book for Beginners, by Dennis Jarrett (ECC
Publications Ltd, 1980).
Claimed to be 'all you need to know about computers (and nothing you
don't)'; its main use is in an extensive glossary (over 220 pages!). Jarrett
writes in an easy and colloquial style ('ECMA - It sounds like a skin
complaint but it stands for the European Computer Manufacturers'
Association'). If you object to the style, don't buy the book!

The First Book of Microcomputers, by Robert Moody, (Hayden).
Claimed to be the home computer owner's 'best friend'.

Books about programming

Inside BASIC Games, by R Mateosian (Sybex).
Teaches interactive BASIC programming through games.

BASIC Computer Programs for the Home, by Charles D Sternberg,
(Hayden, 1980).
A comprehensive book of practical home application programs that will
be helpful to both the novice and experienced owner by increasing the
usefulness of any home computer.

The BASIC Workbook, Kenneth Schoman, Jr (Hayden).
A hands-on approach to learning BASIC and the fundamentals of
problem-solving using a computer. The book is subtitled: 'Creative
techniques for Beginning Programmers'.

BASIC and the Personal Computer, Dwyer and Critchfield (Addison
Wesley).

BASIC from the Ground Up, by David E Simon (Hayden Book Co).

Computer Games for Businesses, Schools and Homes, by Gary Orwig and
William S Hodges (Little, Brown and Co).

Magazines

The Orie User
At the moment, this magazine does not exist. But we are absolutely
certain that one or other (or all!) of the major magazine publishers (IPC,
EMAP, VNU etcetera) will sooner or later produce a periodical with a

92

similar title and designed specifically for Orie users. While we obviously
have no idea of how good this (or these) magazines will eventually be,
nevertheless we are fairly confident that at least one will exist by the time
or soon after you read this book.

Computing Today
This magazine is considered by many to be the best of the popular
computing magazines. It covers the whole field of microcomputing and
often provides listings of useful programs. Converting these to run on the
Orie could be both entertaining and educational.

Personal Computer World
Often abbreviated to PCW, this is in many ways required reading for
microcomputer users.

Micro Software and Systems Magazine
This is a new magazine that is devoted mainly to business software. Each
issue focuses on a different computing application: graphics, operating
systems, word processing, etc. It may be of interest to those who intend
to use their Orie to develop serious software, by providing an outline of
the existing software in specific fields.

Which Computer?
A magazine devoted to evaluating mini and microcomputer systems for
business. One of the best in its category.

Which Word Processor? and Office Systems
Originally simply WWP? this magazine was a bimonthly supplement to
Which Computer? It did and does serve a similar purpose within its own
specialised market, and has since expanded its scope to include office
systems in general (largely because the modern word processor has
similarly expanded its scope). Expect to see the magazine become
monthly in the near future.

Which Micro and Software Review
This is one of the better of the new crop of computer magazines. It features
articles on a wide range of equipment from the lower end of business
machines to the new small home computers. Articles on the Orie do
appear now and again, but it is particularly useful for gaining an overall
view of the general trends in microcomputing.

What Micro?
Produced by a rival publisher to the three 'Whiches' and clearly aimed at
the same reader, this magazine seems to follow the general approach not
of the consumer magazine 'Which?', but that of the consumer magazine

93

'What Car?'. After all, why re-invent the wheel when the one you've got
works perfectly well?

M icroDecision

From the same publishers as What Micro? there is inevitably some
overlap of general coverage. Nevertheless, and despite the fact that it has
come in for considerable criticism from 'professionals', it is a well
produced and very good value magazine.

94

Appendix 2

Glossary

Access
To obtain data from, or place data into storage; which may be either
main memory or backing storage.

Acoustic coupler
A portable modem that can be used to transmit signals from one
computer to another via the public telephone network. It takes its name
from its main visible feature; that is, a coupling device that receives the
telephone handset during transmission.

Address
The storage location of information, either in the computer's memory, or
on cassette tape or floppy disk.

Alphanumeric
A term used to describe a string composed of either letters and/or
numbers. In American literature, following the general American
tendency to condense words wherever possible, it is sometimes found as
'alphameric'.

Archive
As a noun, it describes a long term storage medium, such as a cassette or
floppy disk. As a verb, it describes the action of placing a program or
other information on to a cassette or floppy disk for the purpose of long
term storage.

Argument
Commonly used to desc.ribe the value associated with a command.

Array·
A linear arrangement of individual items of data that can each be
identified by an index that allows single items to be examined. Thus, the
command DIM A$(2�) will provide an array of 20 memory locations that
can be examined sequentially by their names A$(1), A$(2) and so on.

ASCII characters
The American Standard Code for Information Interchange (pronounced
'as-key'): a code used by most computers to represent 128 different text

95

and computer control characters. It uses 7 bits for each character. For
example, the ASCII code for the character A is 1000001.

Assembly language
A language similar in structure to machine language, but made up of
mnemonics and symbols. Programs written in assembly language are
slightly less difficult to write and understand than programs in machine
language.

BASIC
The computer language immediately available when many microcompu­
ters are turned on (including the Dragon and the BBC Microcomputer),
and in which commands to it are expressed. BASIC actually stands for
Beginner's All-purpose Symbolic Instruction Code.

Baud
A measure of the speed by which signals are sent over a communications
line. In practice it corresponds more or less with 'bits per second'.

Binary
A number system with two digits, 'O' and 'l ', with each digit in a binary
number representing a power of two. Most digital computers are
essentially binary in nature.

Bit
Short for 'binary digit'. A bit (0 or 1) is the smallest unit of digital
information.

Board
A printed circuit board, or PCB, is sometimes called a printed circuit
card. It is usually plastic and has its required circuits (in a conducting
medium like copper) printed on its surface. There is also a number of
small holes where individual electronic components can be plugged or
soldered into the board to make contact with those circuits. At the other
end of the circuit is the edge of the board, which is equipped with
connectors. The connectors engage with further circuitry in the
backplane, which is the part of the computer that interconnects the
various boards. The processing functions of a microcomputer and its
main memory will be held on a small number of PCBs.

Boot
Short for 'bootstrap': the process of loading an operating system from
disk or tape into computer memory.

Branch
A departure from the sequential performance of program statements. An

96

unconditional branch causes the computer to jump to a specified
program line every time the branching statement is encountered. A
conditional branch transfers program control in accordance with the
result of a conditional test.

Buffer
An area of computer memory for temporary storage of either input or
output data.

Bug
An

.
error in c?mputer programming. Because the error may only be

noticed when It affects a different part of the program, many bugs are
very difficult to find.

Byte
A unit of computer storage that comprises 8 bits. It is almost the same as
the storage needed for a single character. Thus, a 32K Byte computer
has approximately 32000 storage locations each able to store a character.

Central processing unit (cpu)
The 'brains' of the computer, contammg the electronic circuits that
interpret and execute instructions.

Character
A letter, number, punctuation symbol, or special graphics symbol.

Chip
Literally, the chip of silicon from which an integrated circuit 1s
fabricated, but used popularly to refer to the integrated circuit itself.

Constant
A specific numeric or string value. A numeric constant is any real
number, such as 1.2 or -4321. A string constant is any combination of
characters, up to the limit set by each different version of BASIC,
enclosed in quotation marks, such as "HELLO" or "22lb Baker
Street". See also 'Variable'.

CP/M

An operating system originally devised by Gary Kildall and now owned
by the company, Digital Research, of which he is president. It was
designed to run on the Intel 8080, 8085 and Zilog Z80 processors, and
has become the industry standard operating system for small business
microcomputers, with a software library of, by now, well over 5000
independently produced software packages. A number of the new
'home' computers are capable of running CP/M either directly or via
add-on cartridges. The Commodore 64 and TI 99/4A are examples of the

97

latter, while, at the time of going to press there are plans to implement it
on the Lynx, and rumours that it will be implemented on the Spectrum.

Cursor
The flashing bar or square on a computer's visual display screen which
indicates the position at which the next item will be displayed.

Daisywheel
A type of print element that loosely resembles a daisy, and the type of
printer that uses that element. On the print el ment, chai;acters are held
on the end of spokes (corresponding to the petals of the daisy) radiating
from a central hub. The daisywheel printer is the current standard
printer for all applications, such as business word processing, where
good quality printing is necessary.

Database
An organised collection of data from which either data or the properties
of items of data can easily be retrieved.

Debug
To find and correct errors (bugs) in a program.

Default
This is a value that is automatically assigned by the program being used
whenever the user of that program does not specify a particular value for
a given variable.

Disk
A disk on which programs or data can be stored as magnetic patterns on
the surface of the disk, and from which recorded information can be
rapidly retrieved. Also known as a floppy disk.

Disk Operating System (DOS)
An operating system specifically for a disk drive. A program to facilitate
the storage of information on disk and its retrieval from the disk. The
DOS selects unused portions of the disk surface for data storage, and
then remembers where everything is for data retrieval. See also,
operating system.

Double-density
It is possible for disk drive manufacturers to double the number of bits
stored per inch on a disk. You pay extra for the drives and for the disks
themselves for this increased storage capacity - but the price increase is
less than that for buying a second disk drive. Since double-density drives
came on to the market, the original density disks are now often referred
to as 'single-density'.

98

Double-sided
It is now possible for disk drive manufacturers to produce disks and disk
drives with data storage facilities on both sides of the disk. The extra
technology involved in writing to and reading from both sides of a disk
means that these disks are far more expensive than is usually acceptable
for home computers. These drives are therefore more frequently found
on business computers. Since double-sided drives came on to the
market, the original disks are now often referred to as 'single-sided'.

Execute
The act of obeying the instructions contained in a computer program.
Synonymous with running a program.

File

A collection of related data records stored on a device, such as a cassette
tape or floppy disk.

Floppy disk drive
A peripheral device used to store programs and data on disks made of a
thin flexible plastic coated with a magnetic recording surface (called a
floppy disk or diskette). Floppy disks are more reliable and much faster
in operation than simple cassette tapes.

Flow chart
A diagram indicating in stylised form the steps of a computation. It is
used as an aid to program development.

Graphics
Pictures produced by a computer.

Hardware
More properly called 'computer hardware', it is the collection of physical
devices that make up a computer system.

High level language
A language that is more intelligible to human beings than it is to
machines; for example, BASIC, Pascal, FORTRAN. See also: Low level
language.

Increment
A value that consistently modifies a variable. The FOR ... NEXT ...
STEP instruction consistently modifies (increments) the FOR variable
by the STEP value.

Integer
A whole number, either positive, negative, or zero.

99

Integrated circuit
An electronic circuit fabricated in extreme miniature form on a silicon
chip typically a few millimetres square.

Interface
An electronic and/or physical connection between different devices. A
serial interface transmits or accepts information one bit at a time,
whereas a parallel interface transmits or accepts information several bits
at a time.

Interpreter
Software which translates a program in a high-level language into
machine code, which comprises the binary instructions which corres­
pond directly to computer operations and is the 'language' that the
microprocessor understands. The program is executed at the same time
as it is interpreted. This is distinct from a 'compiler', which performs a
similar operation but produces a compiled program from the user's
source program. This compiled program is the program that is ultimately
executed. With an interpreter, each statement in the high-level language
program is translated and executed immediately. This means you can
add or delete instructions and see the effect immediately, so it speeds the
process of program development. Interpreters might take up some
memory, since they have to be waiting to translate; and interpreted
programs are certainly slower when it comes to run-time (because a
program already in machine code is inevitably much more efficient). But
because interpreter languages do not require the compile process they are
generally preferred for home computers. Apart from BASIC, you will
find the APL and PASCAL languages frequently in interpreter form.

K

lK stands for 1 kilobyte of memory, and gives the size of memory
consisting of multiples of 1024 storage locations.

Listing
A printout (which can be either as a display on the screen, or as a
physical printed list) of the lines of instruction that makes up a program.

Loop
A group of consecutive program lines that are repeatedly performed,
usually a specified number of times.

Low level language
A language that is more intelligible to machines than it is to human
beings; for example, assembler. See also: High level language.

100

Machine code
The code in which instructions must be conveyed to a microprocessor in
order that it may respond to them directly.

Mainframe
A ter_m, whose derivation is now somewhat obscure, loosely used to
describe any computer larger than a home, micro, or mini computer.

Memory

�lso �ailed main memory, core memory, or main storage. The integrated
c1rcm�s of a computer in which information is stored that is directly
�ccess1ble to the cpu, as opposed to peripheral, or backing storage which
1s accessible only via interfaces.

Microcomputer
A computer whose central processor is on a microprocessor.

Microprocessor
Physically, a very complex integrated circuit. Functionally, an electronic
dev_ice that can be programmed and can, in consequence, perform a
vanety of tasks.

Microsecond
A period of time equal to one millionth of a second.

Millisecond
A period of time equal to one thousandth of a second.

Mode
A condition or a set of conditions under which a particular set of rules
applies.

Modem
A device that allows signals to be sent from one computer to another via
the telephone network. There must be a modem between the sending
computer and the beginning of the telephone link, and between the end
of the telephone link and the receiving computer. A modem converts the
digital signals from the computer into analogue signals for the telephone
system, and back again; that is, it MOdulates and DEModulates the
signals.

Operating system
Systems software that controls the computer and its peripheral devices.

Output
Information sent by the cpu to any peripheral device.

101

Peripheral
Equipment that can be attached to a computer, and can be used and
controlled by the computer. Examples are cassette units, television
screens, and printers.

Pixel
A graphics 'picture element' - the smallest programmable element on the
screen.

Port
A socket on the computer into which you can plug a terminal or some
other input/output device.

Printed circuit board
(see Board)

Prestel
The name for British Telecom's pioneering viewdata service. It is
becoming increasingly important for home computer users with the
launch of Micronet, a viewdata system specifically for the home
computer user.

Program
An ordered sequence of commands given to a computer, so that when it
obeys them it automatically performs a specified and complete task.

Prompt
A symbol (different for the different versions of BASIC), which marks
the beginning of each program line during input from the keyboard; a
symbol or phrase that requests input from the user.

RAM

Random-access memory. Memory whose contents are lost when the
power supply is turned off. The amount of RAM determines how much
memory is available for the user to store programs and data.

Record
A collection of related data elements, such as an individual's payroll
information or a student's exam scores. A group of similar records, such
as a company's payroll information, or a school's exam results, is called a
file.

ROM

Read-only memory. This is permanent memory, typically used to store
information that is always required, such as that which provides BASIC.
This memory is not available to store the user's programs: it provides
facilities required by the user.

102

Scroll
To move all the text on the screen of a video monitor (usually upwards)
in order to make room for more (usually at the bottom).

Sprite
A high resolution programmable object used in sophisticated graphics. It
is created by coding individual pixels in a matrix, and can then be treated
as a whole. It can be made into almost any shape and can be moved freely
around the screen.

Software
Computer programs; the list of instructions that tell a computer to
perform a given task or tasks - as opposed to hardware (the computer
itself). There are basically two types of software: systems and applica­
tions. Examples of systems software includes operating systems and
language interpreters. Applications software includes programs that
instruct the computer to perform specific applications, such as word
processing, playing computer games etcetera.

String
A sequence of letters, numbers or symbols, usually arranged in some
specific order, and treated as a unit.

Subroutine
A program segment which can be used more than once during the
execution of a program, such as a complex set of calculations. In most
forms of BASIC, a subroutine is best defined with the GOSUB and
RETURN statements.

Telecommunications
A wide ranging term used to describe the transmission and reception of
information by electronic means. It therefore includes the communica­
tion of one computer with another, whether it be by radio, cable, satellite
or a combination of all three.

Trace
Listing the order in which the computer performs program statements.
Tracing the line numbers can help you find errors in a program flow.

User
Any person or persons who use a computer.

User port
One of the connections at the rear of a number of microcomputers,
which can be used to send or receive signals under the control of the
user's program.

103

Users group
A group of people who have computers from a particular supplier, or
who have some kind of computing interest. It is worth stressing the value
that this kind of organisation can offer, even when, as sometimes
happens, it is really a manufacturer-inspired mouthpiece designed
primarily for marketing purposes. Users can discuss problems, swap
solutions and programs, band together to get discounts on bulk-buying
consummables like paper and disks, and if necessary present a coherent
front to get some action from the supplier.

Variable

A name given to a value that may vary during the execution of a
program. Think of a variable as a memory location or pigeon-hole where
values can be replaced by new values during program execution.

Viewdata

The generic term for the database system pioneered by British Telecom
and its public Prestel service. Typically, it involves either an adapted
television set, or a computer, that accesses a large centralised database of
information. When used with a home computer, it can provide
information in both directions: to the user and from the user. The
potential applications for this technology are limited only by our
imagination, and range from the automatic dissemination of software
(telesoftware), to armchair mail-order (with inspection, ordering and
payment all done electronically), and to improving the democratic
process of government by allowing snap referenda at almost any time on
any subject.

Word processor

"."- system for processing textual material electronically and then printing
1t or, perhaps, transmitting it to a similar system. In this context, the
processing is mainly editing.

104

Appendix 3

The Tower of Hanoi
a gaine

This game is one of the classic logic problems. You are given a pile of
discs of different sizes, and you have to move the discs one at a time from
location A to location C in as few moves as possible. Location B is
available as a temporary position to help you sort the discs. The problem,
however, is that you must never put a disc on top of one that is smaller in
size than itself.

To use the program, enter the following listing accurately. When
entered, type RUN and follow the instructions that appear on the screen.
You will soon be presented with a picture showing a Tower of the size
you chose on the left hand side. Locations B and C, empty to begin with,
are shown to the right. To move the discs, simply type the location of the
disc you wish to move (say, 'A') followed by the location you wish to
move it to (say, 'C'). Thus, 'A,C' may well be your first move. If it is,
then 'A,B' must be your second move - you cannot do 'A,C' again (big
disc on to little disc!), and there is little point in moving the small disc
again before making any other move. Good luck!

1plNK2: PAPER4
2p PRINT CHR$ (17)
3p CLS
4p PLOT 1p,3,''TOWER OF HANOI"
5p PLOT 1,7,"AIM: TO MOVE ALL DISCS TO C"
6p PLOT 1,9,"RULE 1: ONLY MOVE ONE DISC"
7p PLOT 9, 1 p, "AT EACH MOVE"
8p PLOT 1, 12, "RULE 2: LARGE DISCS MUST NOT"
9p PLOT 9, 13, "SIT ON SMALL DISCS"

1 pp PLOT 1, 16, "TO MOVE PRESS A B OR C KEYS"
1 1p PLOT 15,22,"PRESS ANY KEY"
12p GET A$
14P CLS : PLOT 1 p,3, "TOWER OF HANOI"
15p PLOT 1,9,"HOW MANY DISCS DO YOU WANT?"
155 PLOT 1, 12, "CHOOSE A NUMBER BETWEEN 2 AND 6
16P GET A$: C = VAL(A$)

10:

18p IF C > 1 AND C < 7 THEN 2pp
19p PLOT 1, 12, "YOU HAVE TYPED AN INVALID NUMBER"
195 PLOT 1, 15,' 'TRY AGAIN"
196 WAIT 2pp: GOTO 14p
2pp FOR I = 1 TO C : A(I, 1) = I : A(l,2) = p :

A(I,3) = p: NEXT I
22p H(1) = C : H(2) = p : H(3) = p : M = p
23p CLS : PLOT 12,2, "TOWER OF HANOI"
24p Y$ = "TARGET MOVES" : W$ = "MOVES MADE"
25p PLOT 1,4,Y$ + STR$(INT(2 i C-1))
26p PLOT 1,6, W$ + STR$(M)
31 p FOR I = p TO 37 : FOR K = 2p TO 26
32p PLOT, I,K,CHR$(149)
33p PLOT 38,K,CHR$(147)
34p NEXT K,I
35p PLOT 6,21, "A"
36p PLOT 19,21, "B"
37p PLOT 32,21, "C"
4pp P$ = CHR$(128) : R$(6) = "(SPC)"
41p 0$(2) = P$
42p FOR I= 2 TO 6: 0$(I+1) = 0$(I)+P$+P$: NEXT I
43p FOR I= 5 TO 1 STEP - 1 : R$(I) = R$(I+1)+"(SPC)":

NEXT I
44p 0$(1) = R$(2) + R$(2) + "(SPC)"
45p FOR I = 2 TO 6 : 0$(1) = R$(I) + 0$(I) + R$(I) :

NEXT I
47p GOSUB 5ppp
52p GOSUB 6ppp
522 GOTO 53p
525 GOSUB 6p75
53p IF H(I1) < 1 THEN PLOT 2p,7, "IMPOSSIBLE(2SPC)":

GOT0 525
54p IF H(I2) = p THEN 56p
55p IF A(C + 1 - H(I1),11) > A(C + 1 - H(I2),12)

THEN PLOT 2p,7,"INVALID MOVE": GOTO 525
56p H(I2) = H(I2) + 1
57p A(C + 1 - H(I2),12) = A(C + 1 - H(I1),11)
58p A (C + 1 - H(I1),11) = p
59p H(I1) = H(I1) -1
6pp M = M + 1
61 p PLOT 1,6,W$ + STR$(M)
62P Gosus 5ppp

106

63p IF H(3) < > C THEN 52p
64p PLOT 1,1p,"CONGRATULATI0NS"
65p PLOT 1, 12," PRESS ANY KEY"
66p PLOT 1, 14, "FOR A NEW GAME"
69P GOTO 12p

5ppp FOR I = 1 TO C
5p1 p T$ = 0$(A(I, 1) + 1)
5p11 R$ = 0$(A(I,2) + 1)
5p12 S$ = 0$(A(I,3) + 1)
5p15 P$ = T$ + "(2SPC)" + R$ + "(2SPC)" + S$
5p3p PLOT 1, 19 -(C - 1)*2,P$
5p35 PLOT 1, 19 -(C - 1)*2 - 1,P$
5p4p NEXT I
5p5p RETURN
6ppp PLOT 2p,7, "TYPE A MOVE(2SPC)"
6p1p GET Z$
6p2p PLOT 2p,7, "(13SPC)"
6p25 11 = ASC(Z$) - 64
6p3p GETZ$
6p35 12 = ASC(Z$) - 64
6p5p IF 11 = I2 THEN 6p7p
6p6p IF 11 > p AND 11 < 4 AND 12 > p AND 12 < 4

THEN RETURN
6p7p PLOT 2p,7,"INVALID MOVE"
6p75 WAIT 2pp
6p8p GOTO 6ppp

107

Index GOT0,43 modem, 10, 101
graphics, 2, 57, 83 movement, 73

MUSIC, 85

6502 Processor, 4 CSAVE, 52 hardware, 99

CURSET,69 high level language, 99 NEW,38

cursor, 14, 98 high resolution, 57, 69

access, 95 cursor movement, 25 HIRES,69

acoustic coupler, 95
operating system, 101

address, 95
output, 101

alphanumeric, 95 daisywheel, 98 IF/THEN, 41-2

animation, 75 Dartmouth College, 37 IMMEDIATE mode, 28

applications, 10 DATA, 66, 70-1 increment, 99 PAPER, 62

archive, 95 database, 98 INK, 62 PATTERN, 79

argument, 95 debug,98 INPUT, 40 patterns, 64

arithmetic sequence, 34 decisions, 41 INT,66 peripheral, 9, 83, 102

array, 50, 95 default, 98 integer, 99 PET,4

ASCII codes, 60, 95 DEF USR,84 integrated circuit, 100 pictures, 70

assembly language, 96 DEFERRED mode, 28 interface, 100 PING, 86

delay loop, 87 interpreter, 100 pixels, 57, 69

development, 3 PLOT,49

BASIC, 3, 5, 37, 83, 96 DIM, 50 POKE, 59, 84

baud,96 disk, 11, 98 K, 100 port, 9

binary, 96 Disk Operating System (DOS), 98 keyboard, 15, 83 power unit, 84

bit, 96 double-density, 98 Prestel, 102

board, 96 double-sided, 99 PRINT, 30-31

books, 91 DRAW,69 LEFT$, 31 printed circuit board, 84, 96

boot, 96 drawing, 70 LEN, 31 printer, 9, 53

branch, 96 dynamic simulation, 78 LIST, 27 printing, 53

buffer, 25, 97
listing, 9, 100 printout, 9

bug,97
LUST, 53 program, 102

business, 11 EDIT, 25 loading, 18 programming, 37

byte, 97 editing, 2, 22 loop, 45, 100 prompt, 102

error messages, 32 LORES 0, 60

extensions, 9 LORES I, 60

calculations, 33 execute, 99 low level language, 100 RAM, 5, 84-5

calculator, 33 EXPLODE, 85 low resolution, 57, 60 READ, 70-1

CAPS mode, 16 exponentiation, 33 LPRINT, 53 record, 102

cassette unit, 6, 18, 52, 83
repetition, 45

central processing unit (cpu), 97
RESET, 17

character, 97 file, 99 machine code, 6, 101 RETURN, 86

chip, 3, 97 FILL, 79 mainframe, 101 RIGHT$, 31

CIRCLE, 79 floppy disk, 99 manufacturer, 83 RND, 50

CLOAD, 19 floppy disk drive, 99 magazines, 92 ROM, 5, 84-5

CLS, 38 flow chart, 99 memory, 83, 101 RUN,6

colours, 62 FOR ... NEXT, 45 microcomputer, 101

computer assisted learning, 10 FOR ... NEXT ... STEP, 49 microprocessor, 1, 3, 83, 101

constant, 97 microsecond, 101 saving, 52

CONT, 16
MID$, 31 schools, 11

CPIM, 97 GOSUB, 86 millisecond, 101 screen, 14, 59

mode, 101 screen display, 83

108 109

screen grid, 49, 59
scroll, 103
SHOOT,86
software, 8, 103
sound, 85
space invader, 70
specification, 83

STEP, 49
string, 103
subroutine, 103
switching on, 1 3

Tangerine, 4
telecommunications, 103
television set, 2, 13
TEXT,60
TI, 86
TI$,86
timer, 86

TowerofHanoi, 10, 19
trace, 103
translation program, 51

110

TRON,28
TROFF,28
typewriter mode, 16

user, 103
user port, 103
users group, 104

variable, 104
VDU,9
VIC-20, 5
viewdata, 104
VisiCalc, 11

word processor, 104

X,Y co-ordinates, 59

ZAP, 86
ZX80,4

	doc03418420170206173812_001
	doc03418520170206173819_001
	doc03418620170206173843_001
	doc03418720170206173858_001
	doc03418820170206173907_001
	doc03418920170206173930_001
	doc03419020170206173937_001
	doc03419120170206173944_001
	doc03419220170206173951_001
	doc03419320170206173959_001
	doc03419420170206174005_001
	doc03419520170206174011_001
	doc03419620170206174018_001
	doc03419720170206174026_001
	doc03419820170206174036_001
	doc03419920170206174042_001
	doc03420020170206174051_001
	doc03420120170206174057_001
	doc03420220170206174106_001
	doc03420320170206174113_001
	doc03420420170206174119_001
	doc03420520170206174127_001
	doc03420620170206174135_001
	doc03420720170206174141_001
	doc03420820170206174148_001
	doc03420920170206174155_001
	doc03421020170206174202_001
	doc03421120170206174209_001
	doc03421220170206174220_001
	doc03421320170206174227_001
	doc03421420170206174234_001
	doc03421520170206174240_001
	doc03421620170206174246_001
	doc03421720170206174252_001
	doc03421820170206174302_001
	doc03421920170206174310_001
	doc03422020170206174319_001
	doc03422120170206174326_001
	doc03422220170206174333_001
	doc03422320170206174340_001
	doc03422420170206174346_001
	doc03422520170206174352_001
	doc03422620170206174358_001
	doc03422720170206174405_001
	doc03422820170206174411_001
	doc03422920170206174417_001
	doc03423020170206174423_001
	doc03423120170206174428_001
	doc03423220170206174434_001
	doc03423320170206174440_001
	doc03423420170206174449_001
	doc03423520170206174455_001
	doc03423620170206174501_001
	doc03423720170206174506_001
	doc03423820170206174513_001
	doc03423920170206174519_001
	doc03424020170206174525_001
	doc03424120170206174531_001
	doc03424220170206174536_001
	doc03424320170206174541_001
	doc03424420170206174548_001
	doc03424520170206174554_001
	doc03424620170206174601_001

